QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wa4 Unicode version

Theorem wa4 194
Description: Weak A4.
Assertion
Ref Expression
wa4 ((a v (b v b')) == (b v b')) = 1

Proof of Theorem wa4
StepHypRef Expression
1 ax-a4 33 . 2 (a v (b v b')) = (b v b')
21bi1 118 1 ((a v (b v b')) == (b v b')) = 1
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   == tb 5   v wo 6  1wt 8
This theorem is referenced by:  wdid0id5  1109  wdid0id1  1110  wdid0id2  1111  wdid0id3  1112  wdid0id4  1113
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
  Copyright terms: Public domain W3C validator