QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  tt Unicode version

Theorem tt 60
Description: Justification of definition df-t 41 of true (1). This shows that the definition is independent of the variable used to define it.
Assertion
Ref Expression
tt (a v a') = (b v b')

Proof of Theorem tt
StepHypRef Expression
1 ax-a4 33 . . . 4 ((b v b') v (a v a')) = (a v a')
21ax-r1 35 . . 3 (a v a') = ((b v b') v (a v a'))
3 ax-a2 31 . . 3 ((b v b') v (a v a')) = ((a v a') v (b v b'))
42, 3ax-r2 36 . 2 (a v a') = ((a v a') v (b v b'))
5 ax-a4 33 . 2 ((a v a') v (b v b')) = (b v b')
64, 5ax-r2 36 1 (a v a') = (b v b')
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   v wo 6
This theorem was proved from axioms:  ax-a2 31  ax-a4 33  ax-r1 35  ax-r2 36
  Copyright terms: Public domain W3C validator