NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax-ins3 GIF version

Axiom ax-ins3 3187
Description: State the insertion three axiom. This axiom sets up a set that inserts an extra variable at the third place of the relationship described by x. Axiom P4 of {{Hailperin}}.
Assertion
Ref Expression
ax-ins3 yzwt(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
Distinct variable group:   x,y,z,w,t

Detailed syntax breakdown of Axiom ax-ins3
StepHypRef Expression
1 vz . . . . . . . . . . 11 set z
21cv 1397 . . . . . . . . . 10 class z
32csn 2803 . . . . . . . . 9 class {z}
43csn 2803 . . . . . . . 8 class {{z}}
5 vw . . . . . . . . . 10 set w
65cv 1397 . . . . . . . . 9 class w
7 vt . . . . . . . . . 10 set t
87cv 1397 . . . . . . . . 9 class t
96, 8copk 2862 . . . . . . . 8 class w, t
104, 9copk 2862 . . . . . . 7 class ⟪{{z}}, ⟪w, t⟫⟫
11 vy . . . . . . . 8 set y
1211cv 1397 . . . . . . 7 class y
1310, 12wcel 1400 . . . . . 6 wff ⟪{{z}}, ⟪w, t⟫⟫ y
142, 6copk 2862 . . . . . . 7 class z, w
15 vx . . . . . . . 8 set x
1615cv 1397 . . . . . . 7 class x
1714, 16wcel 1400 . . . . . 6 wff z, w x
1813, 17wb 173 . . . . 5 wff (⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
1918, 7wal 1322 . . . 4 wff t(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
2019, 5wal 1322 . . 3 wff wt(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
2120, 1wal 1322 . 2 wff zwt(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
2221, 11wex 1327 1 wff yzwt(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
Colors of variables: wff set class
This axiom is referenced by:  axins3prim  3198  ins3kexg  3410
  Copyright terms: Public domain W3C validator