HomeHome New Foundations Explorer
Theorem List (p. 64 of 64)
< Previous  Wrap >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 6301-6329   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnchoicelem15 6301 Lemma for nchoice 6306. When the special set generator does not yield a singleton, then the cardinal is raisable. (Contributed by SF, 19-Mar-2015.)
NC 1c <c Nc Spac c 0c NC
 
Theoremnchoicelem16 6302* Lemma for nchoice 6306. Set up stratification for nchoicelem17 6303. (Contributed by SF, 19-Mar-2015.)
<_c We NC NC Nc Spac 1c Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
 
Theoremnchoicelem17 6303 Lemma for nchoice 6306. If the special set of a cardinal is finite, then so is the special set of its T-raising, and there is a calculable relationship between their sizes. Theorem 7.2 of [Specker] p. 974. (Contributed by SF, 19-Mar-2015.)
<_c We NC NC Spac Fin Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
 
Theoremnchoicelem18 6304 Lemma for nchoice 6306. Set up stratification for nchoicelem19 6305. (Contributed by SF, 20-Mar-2015.)
Spac Fin
 
Theoremnchoicelem19 6305 Lemma for nchoice 6306. Assuming well-ordering, there is a cardinal with a finite special set that is its own T-raising. Theorem 7.3 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
<_c We NC NC Spac Fin Tc
 
Theoremnchoice 6306 Cardinal less than or equal does not well-order the cardinals. This is equivalent to saying that the axiom of choice from ZFC is false in NF. Theorem 7.5 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
<_c We NC
 
2.4.7  Finite recursion
 
Syntaxcfrec 6307 Extend the definition of a class to include the finite recursive function generator.
FRec
 
Definitiondf-frec 6308* Define the finite recursive function generator. This is a function over Nn that obeys the standard recursion relationship. Definition adapted from theorem XI.3.24 of [Rosser] p. 412. (Contributed by Scott Fenton, 30-Jul-2019.)
FRec Clos1 0c PProd 1c
 
Theoremfreceq12 6309 Equality theorem for finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec FRec
 
Theoremfrecexg 6310 The finite recursive function generator preserves sethood. (Contributed by Scott Fenton, 30-Jul-2019.)
FRec    =>   
 
Theoremfrecex 6311 The finite recursive function generator preserves sethood. (Contributed by Scott Fenton, 30-Jul-2019.)
FRec    &       =>   
 
Theoremfrecxp 6312 Subset relationship for the finite recursive function generator. (Contributed by Scott Fenton, 30-Jul-2019.)
FRec    &       =>    Nn
 
Theoremfrecxpg 6313 Subset relationship for the finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    =>    Nn
 
Theoremdmfrec 6314 The domain of the finite recursive function generator is the naturals. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    &       &       &       =>    Nn
 
Theoremfnfreclem1 6315* Lemma for fnfrec 6318. Establish stratification for induction. (Contributed by Scott Fenton, 31-Jul-2019.)
 
Theoremfnfreclem2 6316 Lemma for fnfrec 6318. Calculate the unique value of at zero. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    &       &       &       =>    0c
 
Theoremfnfreclem3 6317* Lemma for fnfrec 6318. The value of at a successor is related to a previous element. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    &       &       &       &    Nn    &    1c   =>   
 
Theoremfnfrec 6318 The recursive function generator is a function over the finite cardinals. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    &    Funs    &       &       =>    Nn
 
Theoremfrec0 6319 Calculate the value of the finite recursive function generator at zero. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    &    Funs    &       &       =>    0c
 
Theoremfrecsuc 6320 Calculate the value of the finite recursive function generator at a successor. (Contributed by Scott Fenton, 31-Jul-2019.)
FRec    &    Funs    &       &       &    Nn    =>    1c
 
2.5  Cantorian and Strongly Cantorian Sets
 
Syntaxccan 6321 Extend the definition of class to include the class of all Cantorian sets.
Can
 
Definitiondf-can 6322 Define the class of all Cantorian sets. These are so-called because Cantor's Theorem ~< holds for these sets. (Contributed by Scott Fenton, 19-Apr-2021.)
Can 1
 
Syntaxcscan 6323 Extend the definition of class to include the class of all strongly Cantorian sets.
SCan
 
Definitiondf-scan 6324* Define the class of strongly Cantorian sets. Unline general Cantorian sets, this fixes a specific mapping between and 1 . (Contributed by Scott Fenton, 19-Apr-2021.)
SCan
 
Theoremdmsnfn 6325* The domain of the singleton function. (Contributed by Scott Fenton, 20-Apr-2021.)
 
Theoremepelcres 6326 Version of epelc 4765 with a restriction in place. (Contributed by Scott Fenton, 20-Apr-2021.)
   =>   
 
Theoremelcan 6327 Membership in the class of Cantorian sets. (Contributed by Scott Fenton, 19-Apr-2021.)
Can 1
 
Theoremelscan 6328* Membership in the class of strongly Cantorian sets. (Contributed by Scott Fenton, 19-Apr-2021.)
SCan
 
Theoremscancan 6329 Strongly Cantorian implies Cantorian. (Contributed by Scott Fenton, 19-Apr-2021.)
SCan Can
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6329
  Copyright terms: Public domain < Previous  Wrap >