Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpir Structured version   Visualization version   GIF version

Theorem zringlpir 19656
 Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
zringlpir ring ∈ LPIR

Proof of Theorem zringlpir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 19640 . 2 ring ∈ Ring
2 eleq1 2676 . . . 4 (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring)))
3 simpl 472 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring))
4 simpr 476 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0})
5 eqid 2610 . . . . . . 7 inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < )
63, 4, 5zringlpirlem2 19652 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥)
7 simpll 786 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ∈ (LIdeal‘ℤring))
8 simplr 788 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ≠ {0})
9 simpr 476 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑧𝑥)
107, 8, 5, 9zringlpirlem3 19653 . . . . . . 7 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
1110ralrimiva 2949 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
12 breq1 4586 . . . . . . . 8 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1312ralbidv 2969 . . . . . . 7 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1413rspcev 3282 . . . . . 6 ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
156, 11, 14syl2anc 691 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
16 eqid 2610 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
17 eqid 2610 . . . . . . . 8 (LPIdeal‘ℤring) = (LPIdeal‘ℤring)
18 dvdsrzring 19650 . . . . . . . 8 ∥ = (∥r‘ℤring)
1916, 17, 18lpigen 19077 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
201, 19mpan 702 . . . . . 6 (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2120adantr 480 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2215, 21mpbird 246 . . . 4 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring))
23 zring0 19647 . . . . . 6 0 = (0g‘ℤring)
2417, 23lpi0 19068 . . . . 5 (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring))
251, 24mp1i 13 . . . 4 (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring))
262, 22, 25pm2.61ne 2867 . . 3 (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring))
2726ssriv 3572 . 2 (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)
2817, 16islpir2 19072 . 2 (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)))
291, 27, 28mpbir2an 957 1 ring ∈ LPIR
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  {csn 4125   class class class wbr 4583  ‘cfv 5804  infcinf 8230  ℝcr 9814  0cc0 9815   < clt 9953  ℕcn 10897   ∥ cdvds 14821  Ringcrg 18370  LIdealclidl 18991  LPIdealclpidl 19062  LPIRclpir 19063  ℤringzring 19637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-dvdsr 18464  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-lpidl 19064  df-lpir 19065  df-cnfld 19568  df-zring 19638 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator