Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrei Structured version   Visualization version   GIF version

Theorem zrei 11260
 Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.)
Hypothesis
Ref Expression
zrei.1 𝐴 ∈ ℤ
Assertion
Ref Expression
zrei 𝐴 ∈ ℝ

Proof of Theorem zrei
StepHypRef Expression
1 zrei.1 . 2 𝐴 ∈ ℤ
2 zre 11258 . 2 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977  ℝcr 9814  ℤcz 11254 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-neg 10148  df-z 11255 This theorem is referenced by:  dfuzi  11344  eluzaddi  11590  eluzsubi  11591  dvdslelem  14869  divalglem1  14955  divalglem6  14959  divalglem9  14962  gcdaddmlem  15083  basellem9  24615  axlowdimlem16  25637  poimirlem17  32596  poimirlem19  32598  poimirlem20  32599  fdc  32711  jm2.27dlem2  36595
 Copyright terms: Public domain W3C validator