MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zq Structured version   Visualization version   GIF version

Theorem zq 11670
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
zq (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Proof of Theorem zq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 11259 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21div1d 10672 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥)
32eqeq2d 2620 . . . . 5 (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥))
4 eqcom 2617 . . . . 5 (𝑥 = 𝐴𝐴 = 𝑥)
53, 4syl6rbbr 278 . . . 4 (𝑥 ∈ ℤ → (𝑥 = 𝐴𝐴 = (𝑥 / 1)))
6 1nn 10908 . . . . 5 1 ∈ ℕ
7 oveq2 6557 . . . . . . 7 (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1))
87eqeq2d 2620 . . . . . 6 (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1)))
98rspcev 3282 . . . . 5 ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
106, 9mpan 702 . . . 4 (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
115, 10syl6bi 242 . . 3 (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
1211reximia 2992 . 2 (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
13 risset 3044 . 2 (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴)
14 elq 11666 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
1512, 13, 143imtr4i 280 1 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wrex 2897  (class class class)co 6549  1c1 9816   / cdiv 10563  cn 10897  cz 11254  cq 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-z 11255  df-q 11665
This theorem is referenced by:  zssq  11671  qbtwnxr  11905  modirr  12603  qexpcl  12738  qexpclz  12743  zsqrtelqelz  15304  pczpre  15390  pc0  15397  pcrec  15401  pcdvdstr  15418  pcgcd1  15419  pcgcd  15420  pc2dvds  15421  pc11  15422  sylow1lem1  17836  vitalilem1  23182  vitalilem1OLD  23183  elqaalem1  23878  elqaalem3  23880  qaa  23882  lgsneg  24846  lgsdilem2  24858  lgsne0  24860  qabvle  25114  ostthlem1  25116  ostthlem2  25117  padicabv  25119  ostth2lem2  25123  ostth2  25126  ostth3  25127  qqhucn  29364  mblfinlem1  32616  rmxypairf1o  36494  rmxycomplete  36500  rmxyadd  36504  rmxy1  36505  mpaaeu  36739  aacllem  42356
  Copyright terms: Public domain W3C validator