MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem5 Structured version   Visualization version   GIF version

Theorem zorn2lem5 9205
Description: Lemma for zorn2 9211. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem5
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 zorn2lem.3 . . . . . 6 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr1 7380 . . . . 5 𝐹 Fn On
3 fnfun 5902 . . . . 5 (𝐹 Fn On → Fun 𝐹)
42, 3ax-mp 5 . . . 4 Fun 𝐹
5 fvelima 6158 . . . 4 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
64, 5mpan 702 . . 3 (𝑠 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
7 nfv 1830 . . . . 5 𝑦(𝑤 We 𝐴𝑥 ∈ On)
8 nfra1 2925 . . . . 5 𝑦𝑦𝑥 𝐻 ≠ ∅
97, 8nfan 1816 . . . 4 𝑦((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)
10 nfv 1830 . . . 4 𝑦 𝑠𝐴
11 df-ral 2901 . . . . . 6 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦(𝑦𝑥𝐻 ≠ ∅))
12 onelon 5665 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
13 zorn2lem.7 . . . . . . . . . . . . . . . 16 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
14 ssrab2 3650 . . . . . . . . . . . . . . . 16 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ⊆ 𝐴
1513, 14eqsstri 3598 . . . . . . . . . . . . . . 15 𝐻𝐴
16 zorn2lem.4 . . . . . . . . . . . . . . . 16 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
171, 16, 13zorn2lem1 9201 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐻)
1815, 17sseldi 3566 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐴)
19 eleq1 2676 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑠 → ((𝐹𝑦) ∈ 𝐴𝑠𝐴))
2018, 19syl5ib 233 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑠 → ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2112, 20sylani 684 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑠 → (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2221com12 32 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → ((𝐹𝑦) = 𝑠𝑠𝐴))
2322exp43 638 . . . . . . . . . 10 (𝑥 ∈ On → (𝑦𝑥 → (𝑤 We 𝐴 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2423com3r 85 . . . . . . . . 9 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2524imp 444 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2625a2d 29 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2726spsd 2045 . . . . . 6 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦(𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2811, 27syl5bi 231 . . . . 5 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2928imp 444 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴)))
309, 10, 29rexlimd 3008 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑠𝑠𝐴))
316, 30syl5 33 . 2 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑠 ∈ (𝐹𝑥) → 𝑠𝐴))
3231ssrdv 3574 1 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643   We wwe 4996  ran crn 5039  cima 5041  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  cfv 5804  crio 6510  recscrecs 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  zorn2lem6  9206  zorn2lem7  9207
  Copyright terms: Public domain W3C validator