MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Structured version   Visualization version   GIF version

Theorem znunithash 19732
Description: The size of the unit group of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
Assertion
Ref Expression
znunithash (𝑁 ∈ ℕ → (#‘𝑈) = (ϕ‘𝑁))

Proof of Theorem znunithash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfphi2 15317 . 2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2 nnnn0 11176 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 znchr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2610 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2610 . . . . . . . . . 10 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
6 eqid 2610 . . . . . . . . . 10 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
73, 4, 5, 6znf1o 19719 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
82, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
9 nnne0 10930 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
10 ifnefalse 4048 . . . . . . . . 9 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
11 reseq2 5312 . . . . . . . . . . 11 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)))
12 f1oeq1 6040 . . . . . . . . . . 11 (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
1311, 12syl 17 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
14 f1oeq2 6041 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
1513, 14bitrd 267 . . . . . . . . 9 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
169, 10, 153syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
178, 16mpbid 221 . . . . . . 7 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))
18 f1ofn 6051 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁))
19 elpreima 6245 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁) → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
2017, 18, 193syl 18 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
21 fvres 6117 . . . . . . . . . 10 (𝑥 ∈ (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2221adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2322eleq1d 2672 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈))
24 elfzoelz 12339 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
25 znunit.u . . . . . . . . . 10 𝑈 = (Unit‘𝑌)
26 eqid 2610 . . . . . . . . . 10 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
273, 25, 26znunit 19731 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
282, 24, 27syl2an 493 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2923, 28bitrd 267 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
3029pm5.32da 671 . . . . . 6 (𝑁 ∈ ℕ → ((𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3120, 30bitrd 267 . . . . 5 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3231abbi2dv 2729 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)})
33 df-rab 2905 . . . 4 {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)}
3432, 33syl6eqr 2662 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
3534fveq2d 6107 . 2 (𝑁 ∈ ℕ → (#‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
36 f1ocnv 6062 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁))
37 f1of1 6049 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
3817, 36, 373syl 18 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
39 ovex 6577 . . . . 5 (0..^𝑁) ∈ V
4039a1i 11 . . . 4 (𝑁 ∈ ℕ → (0..^𝑁) ∈ V)
414, 25unitss 18483 . . . . 5 𝑈 ⊆ (Base‘𝑌)
4241a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ⊆ (Base‘𝑌))
43 fvex 6113 . . . . . 6 (Unit‘𝑌) ∈ V
4425, 43eqeltri 2684 . . . . 5 𝑈 ∈ V
4544a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ∈ V)
46 f1imaen2g 7903 . . . 4 (((((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁) ∧ (0..^𝑁) ∈ V) ∧ (𝑈 ⊆ (Base‘𝑌) ∧ 𝑈 ∈ V)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
4738, 40, 42, 45, 46syl22anc 1319 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
48 hasheni 12998 . . 3 ((((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈 → (#‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (#‘𝑈))
4947, 48syl 17 . 2 (𝑁 ∈ ℕ → (#‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (#‘𝑈))
501, 35, 493eqtr2rd 2651 1 (𝑁 ∈ ℕ → (#‘𝑈) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  {crab 2900  Vcvv 3173  wss 3540  ifcif 4036   class class class wbr 4583  ccnv 5037  cres 5040  cima 5041   Fn wfn 5799  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cen 7838  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  cz 11254  ..^cfzo 12334  #chash 12979   gcd cgcd 15054  ϕcphi 15307  Basecbs 15695  Unitcui 18462  ℤRHomczrh 19667  ℤ/nczn 19670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-phi 15309  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674
This theorem is referenced by:  dchrfi  24780  dchrsum2  24793
  Copyright terms: Public domain W3C validator