Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znnenlem | Structured version Visualization version GIF version |
Description: Lemma for znnen 14780. (Contributed by NM, 31-Jul-2004.) |
Ref | Expression |
---|---|
znnenlem | ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11258 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | zre 11258 | . . . . 5 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℝ) | |
3 | 0re 9919 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
4 | ltnle 9996 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) | |
5 | 3, 4 | mpan2 703 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
6 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
7 | 6 | anbi1d 737 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) ↔ (¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥))) |
8 | ltletr 10008 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) | |
9 | 3, 8 | mp3an2 1404 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
10 | 7, 9 | sylbird 249 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
11 | 10 | ancoms 468 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
12 | 11 | ancomsd 469 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑦 < 𝑥)) |
13 | ltne 10013 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
14 | 13 | ex 449 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
16 | 12, 15 | syld 46 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
17 | 1, 2, 16 | syl2an 493 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
18 | 17 | impcom 445 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ≠ 𝑦) |
19 | znegcl 11289 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
20 | zneo 11336 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ -𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) | |
21 | 19, 20 | sylan2 490 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) |
22 | 2cn 10968 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
23 | zcn 11259 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
24 | mulneg12 10347 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-2 · 𝑦) = (2 · -𝑦)) | |
25 | 22, 23, 24 | sylancr 694 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (-2 · 𝑦) = (2 · -𝑦)) |
26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-2 · 𝑦) = (2 · -𝑦)) |
27 | 26 | oveq1d 6564 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-2 · 𝑦) + 1) = ((2 · -𝑦) + 1)) |
28 | 21, 27 | neeqtrrd 2856 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
29 | 28 | adantl 481 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
30 | 18, 29 | 2thd 254 | . 2 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 ≠ 𝑦 ↔ (2 · 𝑥) ≠ ((-2 · 𝑦) + 1))) |
31 | 30 | necon4bid 2827 | 1 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 < clt 9953 ≤ cle 9954 -cneg 10146 2c2 10947 ℤcz 11254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |