Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlmod Structured version   Visualization version   GIF version

Theorem zlmlmod 19690
 Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmlmod.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmlmod (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)

Proof of Theorem zlmlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmlmod.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2610 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 19685 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊))
5 eqid 2610 . . . . 5 (+g𝐺) = (+g𝐺)
61, 5zlmplusg 19686 . . . 4 (+g𝐺) = (+g𝑊)
76a1i 11 . . 3 (𝐺 ∈ Abel → (+g𝐺) = (+g𝑊))
81zlmsca 19688 . . 3 (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊))
9 eqid 2610 . . . . 5 (.g𝐺) = (.g𝐺)
101, 9zlmvsca 19689 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
1110a1i 11 . . 3 (𝐺 ∈ Abel → (.g𝐺) = ( ·𝑠𝑊))
12 zringbas 19643 . . . 4 ℤ = (Base‘ℤring)
1312a1i 11 . . 3 (𝐺 ∈ Abel → ℤ = (Base‘ℤring))
14 zringplusg 19644 . . . 4 + = (+g‘ℤring)
1514a1i 11 . . 3 (𝐺 ∈ Abel → + = (+g‘ℤring))
16 zringmulr 19646 . . . 4 · = (.r‘ℤring)
1716a1i 11 . . 3 (𝐺 ∈ Abel → · = (.r‘ℤring))
18 zring1 19648 . . . 4 1 = (1r‘ℤring)
1918a1i 11 . . 3 (𝐺 ∈ Abel → 1 = (1r‘ℤring))
20 zringring 19640 . . . 4 ring ∈ Ring
2120a1i 11 . . 3 (𝐺 ∈ Abel → ℤring ∈ Ring)
223, 6ablprop 18027 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel)
23 ablgrp 18021 . . . 4 (𝑊 ∈ Abel → 𝑊 ∈ Grp)
2422, 23sylbi 206 . . 3 (𝐺 ∈ Abel → 𝑊 ∈ Grp)
25 ablgrp 18021 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
262, 9mulgcl 17382 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
2725, 26syl3an1 1351 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
282, 9, 5mulgdi 18055 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.g𝐺)𝑦)(+g𝐺)(𝑥(.g𝐺)𝑧)))
292, 9, 5mulgdir 17396 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
3025, 29sylan 487 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
312, 9mulgass 17402 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
3225, 31sylan 487 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
332, 9mulg1 17371 . . . 4 (𝑥 ∈ (Base‘𝐺) → (1(.g𝐺)𝑥) = 𝑥)
3433adantl 481 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g𝐺)𝑥) = 𝑥)
354, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34islmodd 18692 . 2 (𝐺 ∈ Abel → 𝑊 ∈ LMod)
36 lmodabl 18733 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3736, 22sylibr 223 . 2 (𝑊 ∈ LMod → 𝐺 ∈ Abel)
3835, 37impbii 198 1 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818   · cmul 9820  ℤcz 11254  Basecbs 15695  +gcplusg 15768  .rcmulr 15769   ·𝑠 cvsca 15772  Grpcgrp 17245  .gcmg 17363  Abelcabl 18017  1rcur 18324  Ringcrg 18370  LModclmod 18686  ℤringzring 19637  ℤModczlm 19668 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-cnfld 19568  df-zring 19638  df-zlm 19672 This theorem is referenced by:  zlmassa  19691  zlmclm  22720  nmmulg  29340  cnzh  29342  rezh  29343
 Copyright terms: Public domain W3C validator