Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmassa Structured version   Visualization version   GIF version

Theorem zlmassa 19691
 Description: The ℤ-module operation turns a ring into an associative algebra over ℤ. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmlmod.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmassa (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)

Proof of Theorem zlmassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmlmod.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2610 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 19685 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Ring → (Base‘𝐺) = (Base‘𝑊))
51zlmsca 19688 . . 3 (𝐺 ∈ Ring → ℤring = (Scalar‘𝑊))
6 zringbas 19643 . . . 4 ℤ = (Base‘ℤring)
76a1i 11 . . 3 (𝐺 ∈ Ring → ℤ = (Base‘ℤring))
8 eqid 2610 . . . . 5 (.g𝐺) = (.g𝐺)
91, 8zlmvsca 19689 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
109a1i 11 . . 3 (𝐺 ∈ Ring → (.g𝐺) = ( ·𝑠𝑊))
11 eqid 2610 . . . . 5 (.r𝐺) = (.r𝐺)
121, 11zlmmulr 19687 . . . 4 (.r𝐺) = (.r𝑊)
1312a1i 11 . . 3 (𝐺 ∈ Ring → (.r𝐺) = (.r𝑊))
14 ringabl 18403 . . . 4 (𝐺 ∈ Ring → 𝐺 ∈ Abel)
151zlmlmod 19690 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
1614, 15sylib 207 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ LMod)
17 eqid 2610 . . . . . 6 (+g𝐺) = (+g𝐺)
181, 17zlmplusg 19686 . . . . 5 (+g𝐺) = (+g𝑊)
193, 18, 12ringprop 18407 . . . 4 (𝐺 ∈ Ring ↔ 𝑊 ∈ Ring)
2019biimpi 205 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ Ring)
21 zringcrng 19639 . . . 4 ring ∈ CRing
2221a1i 11 . . 3 (𝐺 ∈ Ring → ℤring ∈ CRing)
232, 8, 11mulgass2 18424 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(.g𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
242, 8, 11mulgass3 18460 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(.r𝐺)(𝑥(.g𝐺)𝑧)) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
254, 5, 7, 10, 13, 16, 20, 22, 23, 24isassad 19144 . 2 (𝐺 ∈ Ring → 𝑊 ∈ AssAlg)
26 assaring 19141 . . 3 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2726, 19sylibr 223 . 2 (𝑊 ∈ AssAlg → 𝐺 ∈ Ring)
2825, 27impbii 198 1 (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  ℤcz 11254  Basecbs 15695  +gcplusg 15768  .rcmulr 15769   ·𝑠 cvsca 15772  .gcmg 17363  Abelcabl 18017  Ringcrg 18370  CRingccrg 18371  LModclmod 18686  AssAlgcasa 19130  ℤringzring 19637  ℤModczlm 19668 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-subrg 18601  df-lmod 18688  df-assa 19133  df-cnfld 19568  df-zring 19638  df-zlm 19672 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator