MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfinf2 Structured version   Visualization version   GIF version

Theorem zfinf2 8422
Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (See ax-inf2 8421 for the unabbreviated version.) (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
zfinf2 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem zfinf2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 8421 . 2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2 0el 3895 . . . . 5 (∅ ∈ 𝑥 ↔ ∃𝑦𝑥𝑧 ¬ 𝑧𝑦)
3 df-rex 2902 . . . . 5 (∃𝑦𝑥𝑧 ¬ 𝑧𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
42, 3bitri 263 . . . 4 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
5 sucel 5715 . . . . . . 7 (suc 𝑦𝑥 ↔ ∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
6 df-rex 2902 . . . . . . 7 (∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)) ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
75, 6bitri 263 . . . . . 6 (suc 𝑦𝑥 ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
87ralbii 2963 . . . . 5 (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦𝑥𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
9 df-ral 2901 . . . . 5 (∀𝑦𝑥𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
108, 9bitri 263 . . . 4 (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
114, 10anbi12i 729 . . 3 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
1211exbii 1764 . 2 (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ ∃𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
131, 12mpbir 220 1 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wal 1473  wex 1695  wcel 1977  wral 2896  wrex 2897  c0 3874  suc csuc 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-suc 5646
This theorem is referenced by:  omex  8423
  Copyright terms: Public domain W3C validator