Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfauscl | Structured version Visualization version GIF version |
Description: Separation Scheme
(Aussonderung) using a class variable. To derive this
from ax-sep 4709, we invoke the Axiom of Extensionality
(indirectly via
vtocl 3232), which is needed for the justification of
class variable
notation.
If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 4766 shows. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
zfauscl.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zfauscl | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfauscl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq2 2677 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | anbi1d 737 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | 3 | bibi2d 331 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
5 | 4 | albidv 1836 | . . 3 ⊢ (𝑧 = 𝐴 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | exbidv 1837 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
7 | ax-sep 4709 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
8 | 1, 6, 7 | vtocl 3232 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∀wal 1473 = wceq 1475 ∃wex 1695 ∈ wcel 1977 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-ext 2590 ax-sep 4709 |
This theorem depends on definitions: df-bi 196 df-an 385 df-tru 1478 df-ex 1696 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 |
This theorem is referenced by: inex1 4727 |
Copyright terms: Public domain | W3C validator |