MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zextle Structured version   Visualization version   GIF version

Theorem zextle 11326
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zextle
StepHypRef Expression
1 zre 11258 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 10473 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀𝑀)
32adantr 480 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑀)
4 breq1 4586 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑀𝑀𝑀))
5 breq1 4586 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑁𝑀𝑁))
64, 5bibi12d 334 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘𝑀𝑘𝑁) ↔ (𝑀𝑀𝑀𝑁)))
76rspcva 3280 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑀𝑀𝑁))
83, 7mpbid 221 . . . . . 6 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
98adantlr 747 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
10 zre 11258 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110leidd 10473 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
1211adantr 480 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑁)
13 breq1 4586 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑀𝑁𝑀))
14 breq1 4586 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑁𝑁𝑁))
1513, 14bibi12d 334 . . . . . . . 8 (𝑘 = 𝑁 → ((𝑘𝑀𝑘𝑁) ↔ (𝑁𝑀𝑁𝑁)))
1615rspcva 3280 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑁𝑀𝑁𝑁))
1712, 16mpbird 246 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
1817adantll 746 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
199, 18jca 553 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑁𝑁𝑀))
2019ex 449 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → (𝑀𝑁𝑁𝑀)))
21 letri3 10002 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
221, 10, 21syl2an 493 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2320, 22sylibrd 248 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → 𝑀 = 𝑁))
24233impia 1253 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  cr 9814  cle 9954  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255
This theorem is referenced by:  zextlt  11327
  Copyright terms: Public domain W3C validator