MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsex Structured version   Visualization version   GIF version

Theorem xrsex 19580
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsex *𝑠 ∈ V

Proof of Theorem xrsex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrs 15985 . 2 *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
2 tpex 6855 . . 3 {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∈ V
3 tpex 6855 . . 3 {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩} ∈ V
42, 3unex 6854 . 2 ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}) ∈ V
51, 4eqeltri 2684 1 *𝑠 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1977  Vcvv 3173  cun 3538  ifcif 4036  {ctp 4129  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  *cxr 9952  cle 9954  -𝑒cxne 11819   +𝑒 cxad 11820   ·e cxmu 11821  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  TopSetcts 15774  lecple 15775  distcds 15777  ordTopcordt 15982  *𝑠cxrs 15983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128  df-tp 4130  df-uni 4373  df-xrs 15985
This theorem is referenced by:  imasdsf1olem  21988  xrslt  29007  xrsmulgzz  29009  xrstos  29010  xrsp0  29012  xrsp1  29013  pnfinf  29068  xrnarchi  29069
  Copyright terms: Public domain W3C validator