Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1cmn Structured version   Visualization version   GIF version

Theorem xrs1cmn 19605
 Description: The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1cmn 𝑅 ∈ CMnd

Proof of Theorem xrs1cmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrs1mnd.1 . . 3 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 19603 . 2 𝑅 ∈ Mnd
3 eldifi 3694 . . . 4 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
4 eldifi 3694 . . . 4 (𝑦 ∈ (ℝ* ∖ {-∞}) → 𝑦 ∈ ℝ*)
5 xaddcom 11945 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))
63, 4, 5syl2an 493 . . 3 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥))
76rgen2a 2960 . 2 𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)
8 difss 3699 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
9 xrsbas 19581 . . . . 5 * = (Base‘ℝ*𝑠)
101, 9ressbas2 15758 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
118, 10ax-mp 5 . . 3 (ℝ* ∖ {-∞}) = (Base‘𝑅)
12 xrex 11705 . . . . 5 * ∈ V
13 difexg 4735 . . . . 5 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
1412, 13ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) ∈ V
15 xrsadd 19582 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
161, 15ressplusg 15818 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
1714, 16ax-mp 5 . . 3 +𝑒 = (+g𝑅)
1811, 17iscmn 18023 . 2 (𝑅 ∈ CMnd ↔ (𝑅 ∈ Mnd ∧ ∀𝑥 ∈ (ℝ* ∖ {-∞})∀𝑦 ∈ (ℝ* ∖ {-∞})(𝑥 +𝑒 𝑦) = (𝑦 +𝑒 𝑥)))
192, 7, 18mpbir2an 957 1 𝑅 ∈ CMnd
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  ‘cfv 5804  (class class class)co 6549  -∞cmnf 9951  ℝ*cxr 9952   +𝑒 cxad 11820  Basecbs 15695   ↾s cress 15696  +gcplusg 15768  ℝ*𝑠cxrs 15983  Mndcmnd 17117  CMndccmn 18016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-xadd 11823  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-tset 15787  df-ple 15788  df-ds 15791  df-xrs 15985  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cmn 18018 This theorem is referenced by:  xrge0cmn  19607  imasdsf1olem  21988  gsumge0cl  39264
 Copyright terms: Public domain W3C validator