Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0infss Structured version   Visualization version   GIF version

Theorem xrge0infss 28915
Description: Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
xrge0infss (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrge0infss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3563 . . . . . . 7 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑦𝐴) → 𝑦 ∈ (0[,]+∞))
2 0xr 9965 . . . . . . . . 9 0 ∈ ℝ*
3 pnfxr 9971 . . . . . . . . 9 +∞ ∈ ℝ*
4 iccgelb 12101 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
52, 3, 4mp3an12 1406 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → 0 ≤ 𝑦)
6 iccssxr 12127 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
76sseli 3564 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
8 xrlenlt 9982 . . . . . . . . 9 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
92, 7, 8sylancr 694 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
105, 9mpbid 221 . . . . . . 7 (𝑦 ∈ (0[,]+∞) → ¬ 𝑦 < 0)
111, 10syl 17 . . . . . 6 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑦𝐴) → ¬ 𝑦 < 0)
1211ralrimiva 2949 . . . . 5 (𝐴 ⊆ (0[,]+∞) → ∀𝑦𝐴 ¬ 𝑦 < 0)
1312ad3antrrr 762 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦𝐴 ¬ 𝑦 < 0)
14 ssralv 3629 . . . . . . . . . 10 ((0[,]+∞) ⊆ ℝ* → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
156, 14ax-mp 5 . . . . . . . . 9 (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
16 simplll 794 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 ∈ ℝ*)
172a1i 11 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 0 ∈ ℝ*)
18 simplr 788 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑦 ∈ (0[,]+∞))
196, 18sseldi 3566 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑦 ∈ ℝ*)
20 simpllr 795 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 ≤ 0)
21 simpr 476 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 0 < 𝑦)
2216, 17, 19, 20, 21xrlelttrd 11867 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 < 𝑦)
2322ex 449 . . . . . . . . . . 11 (((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) → (0 < 𝑦𝑤 < 𝑦))
2423imim1d 80 . . . . . . . . . 10 (((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → (0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralimdva 2945 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝑤 ≤ 0) → (∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2615, 25syl5 33 . . . . . . . 8 ((𝑤 ∈ ℝ*𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2726adantll 746 . . . . . . 7 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2827imp 444 . . . . . 6 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2928adantrl 748 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3029an32s 842 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
31 0e0iccpnf 12154 . . . . 5 0 ∈ (0[,]+∞)
32 breq2 4587 . . . . . . . . 9 (𝑥 = 0 → (𝑦 < 𝑥𝑦 < 0))
3332notbid 307 . . . . . . . 8 (𝑥 = 0 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 0))
3433ralbidv 2969 . . . . . . 7 (𝑥 = 0 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 0))
35 breq1 4586 . . . . . . . . 9 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
3635imbi1d 330 . . . . . . . 8 (𝑥 = 0 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3736ralbidv 2969 . . . . . . 7 (𝑥 = 0 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3834, 37anbi12d 743 . . . . . 6 (𝑥 = 0 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3938rspcev 3282 . . . . 5 ((0 ∈ (0[,]+∞) ∧ (∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4031, 39mpan 702 . . . 4 ((∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4113, 30, 40syl2anc 691 . . 3 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42 simpllr 795 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ ℝ*)
43 simpr 476 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤)
44 elxrge0 12152 . . . . 5 (𝑤 ∈ (0[,]+∞) ↔ (𝑤 ∈ ℝ* ∧ 0 ≤ 𝑤))
4542, 43, 44sylanbrc 695 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]+∞))
4615a1i 11 . . . . . . . 8 (𝐴 ⊆ (0[,]+∞) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4746anim2d 587 . . . . . . 7 (𝐴 ⊆ (0[,]+∞) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4847adantr 480 . . . . . 6 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4948imp 444 . . . . 5 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5049adantr 480 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 breq2 4587 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
5251notbid 307 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤))
5352ralbidv 2969 . . . . . 6 (𝑥 = 𝑤 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑤))
54 breq1 4586 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 < 𝑦𝑤 < 𝑦))
5554imbi1d 330 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5655ralbidv 2969 . . . . . 6 (𝑥 = 𝑤 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5753, 56anbi12d 743 . . . . 5 (𝑥 = 𝑤 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
5857rspcev 3282 . . . 4 ((𝑤 ∈ (0[,]+∞) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5945, 50, 58syl2anc 691 . . 3 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
60 simplr 788 . . . 4 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → 𝑤 ∈ ℝ*)
612a1i 11 . . . 4 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → 0 ∈ ℝ*)
62 xrletri 11860 . . . 4 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤))
6360, 61, 62syl2anc 691 . . 3 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤))
6441, 59, 63mpjaodan 823 . 2 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
65 sstr 3576 . . . 4 ((𝐴 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
666, 65mpan2 703 . . 3 (𝐴 ⊆ (0[,]+∞) → 𝐴 ⊆ ℝ*)
67 xrinfmss 12012 . . 3 (𝐴 ⊆ ℝ* → ∃𝑤 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
6866, 67syl 17 . 2 (𝐴 ⊆ (0[,]+∞) → ∃𝑤 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
6964, 68r19.29a 3060 1 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-icc 12053
This theorem is referenced by:  xrge0infssd  28916  infxrge0lb  28919  infxrge0glb  28920  infxrge0gelb  28921  omsf  29685  omssubaddlem  29688  omssubadd  29689
  Copyright terms: Public domain W3C validator