Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifmhm Structured version   Visualization version   GIF version

Theorem xrge0iifmhm 29313
Description: The defined function from the closed unit interval and the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifmhm 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
21iistmd 29276 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
3 tmdmnd 21689 . . . 4 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd)
42, 3ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd
5 xrge0cmn 19607 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
6 cmnmnd 18031 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
75, 6ax-mp 5 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
84, 7pm3.2i 470 . 2 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
9 xrge0iifhmeo.1 . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
109xrge0iifcnv 29307 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
1110simpli 473 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
12 f1of 6050 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
1311, 12ax-mp 5 . . 3 𝐹:(0[,]1)⟶(0[,]+∞)
14 xrge0iifhmeo.k . . . . 5 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
159, 14xrge0iifhom 29311 . . . 4 ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)))
1615rgen2a 2960 . . 3 𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧))
179, 14xrge0iif1 29312 . . 3 (𝐹‘1) = 0
1813, 16, 173pm3.2i 1232 . 2 (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)
19 unitsscn 29270 . . . 4 (0[,]1) ⊆ ℂ
20 eqid 2610 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 19571 . . . . . 6 ℂ = (Base‘ℂfld)
2220, 21mgpbas 18318 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
231, 22ressbas2 15758 . . . 4 ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))))
2419, 23ax-mp 5 . . 3 (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))
25 xrge0base 29016 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
26 cnfldex 19570 . . . . 5 fld ∈ V
27 ovex 6577 . . . . 5 (0[,]1) ∈ V
28 eqid 2610 . . . . . 6 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
2928, 20mgpress 18323 . . . . 5 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
3026, 27, 29mp2an 704 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
31 cnfldmul 19573 . . . . . 6 · = (.r‘ℂfld)
3228, 31ressmulr 15829 . . . . 5 ((0[,]1) ∈ V → · = (.r‘(ℂflds (0[,]1))))
3327, 32ax-mp 5 . . . 4 · = (.r‘(ℂflds (0[,]1)))
3430, 33mgpplusg 18316 . . 3 · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
35 xrge0plusg 29018 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
36 cnring 19587 . . . 4 fld ∈ Ring
37 1elunit 12162 . . . 4 1 ∈ (0[,]1)
38 cnfld1 19590 . . . . 5 1 = (1r‘ℂfld)
391, 21, 38ringidss 18400 . . . 4 ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))))
4036, 19, 37, 39mp3an 1416 . . 3 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
41 xrge00 29017 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4224, 25, 34, 35, 40, 41ismhm 17160 . 2 (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)))
438, 18, 42mpbir2an 957 1 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  ifcif 4036  cmpt 4643  ccnv 5037  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   · cmul 9820  +∞cpnf 9950  cle 9954  -cneg 10146   +𝑒 cxad 11820  [,]cicc 12049  expce 14631  Basecbs 15695  s cress 15696  .rcmulr 15769  t crest 15904  0gc0g 15923  ordTopcordt 15982  *𝑠cxrs 15983  Mndcmnd 17117   MndHom cmhm 17156  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  fldccnfld 19567  TopMndctmd 21684  logclog 24105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tmd 21686  df-tgp 21687  df-trg 21773  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107
This theorem is referenced by:  xrge0tmd  29320
  Copyright terms: Public domain W3C validator