MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 21422
Description: The function 𝐹 used in xpsval 16055 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 21204 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 eqid 2610 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
6 0ex 4718 . . . . . . . . . . . . . 14 ∅ ∈ V
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
85, 7, 1pt1hmeo 21419 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
9 hmeocn 21373 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
10 cntop2 20855 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
118, 9, 103syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
12 eqid 2610 . . . . . . . . . . . 12 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
1312toptopon 20548 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1411, 13sylib 207 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2610 . . . . . . . . . . . . 13 (∏t‘{⟨1𝑜, 𝐾⟩}) = (∏t‘{⟨1𝑜, 𝐾⟩})
16 1on 7454 . . . . . . . . . . . . . 14 1𝑜 ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1𝑜 ∈ On)
1815, 17, 2pt1hmeo 21419 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1𝑜, 𝐾⟩})))
19 hmeocn 21373 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1𝑜, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1𝑜, 𝐾⟩})))
20 cntop2 20855 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1𝑜, 𝐾⟩})) → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top)
22 eqid 2610 . . . . . . . . . . . 12 (∏t‘{⟨1𝑜, 𝐾⟩}) = (∏t‘{⟨1𝑜, 𝐾⟩})
2322toptopon 20548 . . . . . . . . . . 11 ((∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩})))
2421, 23sylib 207 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩})))
25 txtopon 21204 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))))
2614, 24, 25syl2anc 691 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))))
27 opeq2 4341 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2827sneqd 4137 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
29 eqid 2610 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
30 snex 4835 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3128, 29, 30fvmpt 6191 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
32 opeq2 4341 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1𝑜, 𝑧⟩ = ⟨1𝑜, 𝑦⟩)
3332sneqd 4137 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1𝑜, 𝑧⟩} = {⟨1𝑜, 𝑦⟩})
34 eqid 2610 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})
35 snex 4835 . . . . . . . . . . . . . . 15 {⟨1𝑜, 𝑦⟩} ∈ V
3633, 34, 35fvmpt 6191 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦) = {⟨1𝑜, 𝑦⟩})
37 opeq12 4342 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦) = {⟨1𝑜, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
3831, 36, 37syl2an 493 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
3938mpt2eq3ia 6618 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
40 toponuni 20542 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
42 toponuni 20542 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
432, 42syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
44 mpt2eq12 6613 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
4541, 43, 44syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
4639, 45syl5eqr 2658 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
47 eqid 2610 . . . . . . . . . . . 12 𝐽 = 𝐽
48 eqid 2610 . . . . . . . . . . . 12 𝐾 = 𝐾
4947, 48, 8, 18txhmeo 21416 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
5046, 49eqeltrd 2688 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
51 hmeocn 21373 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
5250, 51syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
53 cnf2 20863 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
544, 26, 52, 53syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
55 eqid 2610 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
5655fmpt2 7126 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5754, 56sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5857r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5958r19.21bi 2916 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
6059anasss 677 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
61 eqidd 2611 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩))
62 vex 3176 . . . . . . . . 9 𝑥 ∈ V
63 vex 3176 . . . . . . . . 9 𝑦 ∈ V
6462, 63op1std 7069 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6562, 63op2ndd 7070 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6664, 65uneq12d 3730 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6766mpt2mpt 6650 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦))
6867eqcomi 2619 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6968a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
7030, 35op1std 7069 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7130, 35op2ndd 7070 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1𝑜, 𝑦⟩})
7270, 71uneq12d 3730 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩}))
73 xpscg 16041 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥} +𝑐 {𝑦}) = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩})
7462, 63, 73mp2an 704 . . . . . 6 ({𝑥} +𝑐 {𝑦}) = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}
75 df-pr 4128 . . . . . 6 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
7674, 75eqtri 2632 . . . . 5 ({𝑥} +𝑐 {𝑦}) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
7772, 76syl6eqr 2662 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({𝑥} +𝑐 {𝑦}))
7860, 61, 69, 77fmpt2co 7147 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
79 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
8078, 79syl6reqr 2663 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)))
81 eqid 2610 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅}))
82 eqid 2610 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))
83 eqid 2610 . . . . 5 (∏t({𝐽} +𝑐 {𝐾})) = (∏t({𝐽} +𝑐 {𝐾}))
84 eqid 2610 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅}))
85 eqid 2610 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))
86 eqid 2610 . . . . 5 (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦))
87 2on 7455 . . . . . 6 2𝑜 ∈ On
8887a1i 11 . . . . 5 (𝜑 → 2𝑜 ∈ On)
89 topontop 20541 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
901, 89syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
91 topontop 20541 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
922, 91syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
93 xpscf 16049 . . . . . 6 (({𝐽} +𝑐 {𝐾}):2𝑜⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
9490, 92, 93sylanbrc 695 . . . . 5 (𝜑({𝐽} +𝑐 {𝐾}):2𝑜⟶Top)
95 df2o3 7460 . . . . . . 7 2𝑜 = {∅, 1𝑜}
96 df-pr 4128 . . . . . . 7 {∅, 1𝑜} = ({∅} ∪ {1𝑜})
9795, 96eqtri 2632 . . . . . 6 2𝑜 = ({∅} ∪ {1𝑜})
9897a1i 11 . . . . 5 (𝜑 → 2𝑜 = ({∅} ∪ {1𝑜}))
99 1n0 7462 . . . . . . 7 1𝑜 ≠ ∅
10099necomi 2836 . . . . . 6 ∅ ≠ 1𝑜
101 disjsn2 4193 . . . . . 6 (∅ ≠ 1𝑜 → ({∅} ∩ {1𝑜}) = ∅)
102100, 101mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1𝑜}) = ∅)
10381, 82, 83, 84, 85, 86, 88, 94, 98, 102ptunhmeo 21421 . . . 4 (𝜑 → (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) ∈ (((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
104 xpscfn 16042 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ({𝐽} +𝑐 {𝐾}) Fn 2𝑜)
1051, 2, 104syl2anc 691 . . . . . . . . 9 (𝜑({𝐽} +𝑐 {𝐾}) Fn 2𝑜)
1066prid1 4241 . . . . . . . . . 10 ∅ ∈ {∅, 1𝑜}
107106, 95eleqtrri 2687 . . . . . . . . 9 ∅ ∈ 2𝑜
108 fnressn 6330 . . . . . . . . 9 ((({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ ∅ ∈ 2𝑜) → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩})
109105, 107, 108sylancl 693 . . . . . . . 8 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩})
110 xpsc0 16043 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (({𝐽} +𝑐 {𝐾})‘∅) = 𝐽)
1111, 110syl 17 . . . . . . . . . 10 (𝜑 → (({𝐽} +𝑐 {𝐾})‘∅) = 𝐽)
112111opeq2d 4347 . . . . . . . . 9 (𝜑 → ⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩ = ⟨∅, 𝐽⟩)
113112sneqd 4137 . . . . . . . 8 (𝜑 → {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩} = {⟨∅, 𝐽⟩})
114109, 113eqtrd 2644 . . . . . . 7 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, 𝐽⟩})
115114fveq2d 6107 . . . . . 6 (𝜑 → (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
116115unieqd 4382 . . . . 5 (𝜑 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
11716elexi 3186 . . . . . . . . . . 11 1𝑜 ∈ V
118117prid2 4242 . . . . . . . . . 10 1𝑜 ∈ {∅, 1𝑜}
119118, 95eleqtrri 2687 . . . . . . . . 9 1𝑜 ∈ 2𝑜
120 fnressn 6330 . . . . . . . . 9 ((({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ 1𝑜 ∈ 2𝑜) → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩})
121105, 119, 120sylancl 693 . . . . . . . 8 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩})
122 xpsc1 16044 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → (({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾)
1232, 122syl 17 . . . . . . . . . 10 (𝜑 → (({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾)
124123opeq2d 4347 . . . . . . . . 9 (𝜑 → ⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩ = ⟨1𝑜, 𝐾⟩)
125124sneqd 4137 . . . . . . . 8 (𝜑 → {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩} = {⟨1𝑜, 𝐾⟩})
126121, 125eqtrd 2644 . . . . . . 7 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, 𝐾⟩})
127126fveq2d 6107 . . . . . 6 (𝜑 → (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘{⟨1𝑜, 𝐾⟩}))
128127unieqd 4382 . . . . 5 (𝜑 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘{⟨1𝑜, 𝐾⟩}))
129 eqidd 2611 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
130116, 128, 129mpt2eq123dv 6615 . . . 4 (𝜑 → (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)))
131115, 127oveq12d 6567 . . . . 5 (𝜑 → ((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})))
132131oveq1d 6564 . . . 4 (𝜑 → (((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})))Homeo(∏t({𝐽} +𝑐 {𝐾}))) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
133103, 130, 1323eltr3d 2702 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
134 hmeoco 21385 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾})))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
13550, 133, 134syl2anc 691 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
13680, 135eqeltrd 2688 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cun 3538  cin 3539  c0 3874  {csn 4125  {cpr 4127  cop 4131   cuni 4372  cmpt 4643   × cxp 5036  ccnv 5037  cres 5040  ccom 5042  Oncon0 5640   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  1𝑜c1o 7440  2𝑜c2o 7441   +𝑐 ccda 8872  tcpt 15922  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  Homeochmeo 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-cda 8873  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368
This theorem is referenced by:  xpstopnlem2  21424
  Copyright terms: Public domain W3C validator