Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsaddlem Structured version   Visualization version   GIF version

 Description: Lemma for xpsadd 16059 and xpsmul 16060. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsadd.7 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
xpsadd.8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
xpsaddlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
xpsaddlem.u 𝑈 = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
xpsaddlem.1 ((𝜑({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹) → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))))
xpsaddlem.2 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈) ∧ ({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈)) → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
Assertion
Ref Expression
xpsaddlem (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝐵,𝑘,𝑥,𝑦   𝐶,𝑘,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝑆,𝑘   𝑈,𝑘   𝑥,𝑊   𝜑,𝑘   · ,𝑘,𝑥,𝑦   × ,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝑅,𝑘,𝑥   𝑘,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝑇(𝑥,𝑦,𝑘)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)

StepHypRef Expression
1 df-ov 6552 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 xpsadd.3 . . . . . 6 (𝜑𝐴𝑋)
3 xpsadd.4 . . . . . 6 (𝜑𝐵𝑌)
4 xpsaddlem.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
54xpsfval 16050 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (𝐴𝐹𝐵) = ({𝐴} +𝑐 {𝐵}))
62, 3, 5syl2anc 691 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ({𝐴} +𝑐 {𝐵}))
71, 6syl5eqr 2658 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}))
8 opelxpi 5072 . . . . . 6 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
92, 3, 8syl2anc 691 . . . . 5 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
104xpsff1o2 16054 . . . . . . 7 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
11 f1of 6050 . . . . . . 7 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:(𝑋 × 𝑌)⟶ran 𝐹)
1210, 11ax-mp 5 . . . . . 6 𝐹:(𝑋 × 𝑌)⟶ran 𝐹
1312ffvelrni 6266 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
149, 13syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
157, 14eqeltrrd 2689 . . 3 (𝜑({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹)
16 df-ov 6552 . . . . 5 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
17 xpsadd.5 . . . . . 6 (𝜑𝐶𝑋)
18 xpsadd.6 . . . . . 6 (𝜑𝐷𝑌)
194xpsfval 16050 . . . . . 6 ((𝐶𝑋𝐷𝑌) → (𝐶𝐹𝐷) = ({𝐶} +𝑐 {𝐷}))
2017, 18, 19syl2anc 691 . . . . 5 (𝜑 → (𝐶𝐹𝐷) = ({𝐶} +𝑐 {𝐷}))
2116, 20syl5eqr 2658 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}))
22 opelxpi 5072 . . . . . 6 ((𝐶𝑋𝐷𝑌) → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2317, 18, 22syl2anc 691 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2412ffvelrni 6266 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2523, 24syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2621, 25eqeltrrd 2689 . . 3 (𝜑({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹)
27 xpsaddlem.1 . . 3 ((𝜑({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹) → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))))
2815, 26, 27mpd3an23 1418 . 2 (𝜑 → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))))
29 f1ocnvfv 6434 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}) → (𝐹({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩))
3010, 9, 29sylancr 694 . . . 4 (𝜑 → ((𝐹‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}) → (𝐹({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩))
317, 30mpd 15 . . 3 (𝜑 → (𝐹({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩)
32 f1ocnvfv 6434 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}) → (𝐹({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩))
3310, 23, 32sylancr 694 . . . 4 (𝜑 → ((𝐹‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}) → (𝐹({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩))
3421, 33mpd 15 . . 3 (𝜑 → (𝐹({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩)
3531, 34oveq12d 6567 . 2 (𝜑 → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (⟨𝐴, 𝐵𝐶, 𝐷⟩))
36 xpsval.1 . . . . . . 7 (𝜑𝑅𝑉)
37 xpsval.2 . . . . . . 7 (𝜑𝑆𝑊)
38 xpscfn 16042 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
3936, 37, 38syl2anc 691 . . . . . 6 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
40 xpsval.t . . . . . . . 8 𝑇 = (𝑅 ×s 𝑆)
41 xpsval.x . . . . . . . 8 𝑋 = (Base‘𝑅)
42 xpsval.y . . . . . . . 8 𝑌 = (Base‘𝑆)
43 eqid 2610 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
44 xpsaddlem.u . . . . . . . 8 𝑈 = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
4540, 41, 42, 36, 37, 4, 43, 44xpslem 16056 . . . . . . 7 (𝜑 → ran 𝐹 = (Base‘𝑈))
4615, 45eleqtrd 2690 . . . . . 6 (𝜑({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈))
4726, 45eleqtrd 2690 . . . . . 6 (𝜑({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈))
48 xpsaddlem.2 . . . . . 6 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈) ∧ ({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈)) → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
4939, 46, 47, 48syl3anc 1318 . . . . 5 (𝜑 → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
50 xpsadd.7 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
51 xpsadd.8 . . . . . . . 8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
52 xpscfn 16042 . . . . . . . 8 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) Fn 2𝑜)
5350, 51, 52syl2anc 691 . . . . . . 7 (𝜑({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) Fn 2𝑜)
54 dffn5 6151 . . . . . . 7 (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) Fn 2𝑜({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘)))
5553, 54sylib 207 . . . . . 6 (𝜑({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘)))
56 iftrue 4042 . . . . . . . . . . . . 13 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
5756fveq2d 6107 . . . . . . . . . . . 12 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑅))
58 xpsaddlem.m . . . . . . . . . . . 12 · = (𝐸𝑅)
5957, 58syl6eqr 2662 . . . . . . . . . . 11 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
60 iftrue 4042 . . . . . . . . . . 11 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
61 iftrue 4042 . . . . . . . . . . 11 (𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐶)
6259, 60, 61oveq123d 6570 . . . . . . . . . 10 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐴 · 𝐶))
63 iftrue 4042 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐴 · 𝐶))
6462, 63eqtr4d 2647 . . . . . . . . 9 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
65 iffalse 4045 . . . . . . . . . . . . 13 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
6665fveq2d 6107 . . . . . . . . . . . 12 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑆))
67 xpsaddlem.n . . . . . . . . . . . 12 × = (𝐸𝑆)
6866, 67syl6eqr 2662 . . . . . . . . . . 11 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
69 iffalse 4045 . . . . . . . . . . 11 𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
70 iffalse 4045 . . . . . . . . . . 11 𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐷)
7168, 69, 70oveq123d 6570 . . . . . . . . . 10 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐵 × 𝐷))
72 iffalse 4045 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐵 × 𝐷))
7371, 72eqtr4d 2647 . . . . . . . . 9 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
7464, 73pm2.61i 175 . . . . . . . 8 (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷))
7536adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ 2𝑜) → 𝑅𝑉)
7637adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ 2𝑜) → 𝑆𝑊)
77 simpr 476 . . . . . . . . . . 11 ((𝜑𝑘 ∈ 2𝑜) → 𝑘 ∈ 2𝑜)
78 xpscfv 16045 . . . . . . . . . . 11 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7975, 76, 77, 78syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
8079fveq2d 6107 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)))
812adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐴𝑋)
823adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐵𝑌)
83 xpscfv 16045 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝑘 ∈ 2𝑜) → (({𝐴} +𝑐 {𝐵})‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
8481, 82, 77, 83syl3anc 1318 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (({𝐴} +𝑐 {𝐵})‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
8517adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐶𝑋)
8618adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐷𝑌)
87 xpscfv 16045 . . . . . . . . . 10 ((𝐶𝑋𝐷𝑌𝑘 ∈ 2𝑜) → (({𝐶} +𝑐 {𝐷})‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
8885, 86, 77, 87syl3anc 1318 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (({𝐶} +𝑐 {𝐷})‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
8980, 84, 88oveq123d 6570 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) = (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)))
9050adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (𝐴 · 𝐶) ∈ 𝑋)
9151adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (𝐵 × 𝐷) ∈ 𝑌)
92 xpscfv 16045 . . . . . . . . 9 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌𝑘 ∈ 2𝑜) → (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
9390, 91, 77, 92syl3anc 1318 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
9474, 89, 933eqtr4a 2670 . . . . . . 7 ((𝜑𝑘 ∈ 2𝑜) → ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) = (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘))
9594mpteq2dva 4672 . . . . . 6 (𝜑 → (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘)))
9655, 95eqtr4d 2647 . . . . 5 (𝜑({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
9749, 96eqtr4d 2647 . . . 4 (𝜑 → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
9897fveq2d 6107 . . 3 (𝜑 → (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))) = (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})))
99 df-ov 6552 . . . . 5 ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
1004xpsfval 16050 . . . . . 6 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
10150, 51, 100syl2anc 691 . . . . 5 (𝜑 → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
10299, 101syl5eqr 2658 . . . 4 (𝜑 → (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
103 opelxpi 5072 . . . . . 6 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
10450, 51, 103syl2anc 691 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
105 f1ocnvfv 6434 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) → (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
10610, 104, 105sylancr 694 . . . 4 (𝜑 → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) → (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
107102, 106mpd 15 . . 3 (𝜑 → (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10898, 107eqtrd 2644 . 2 (𝜑 → (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10928, 35, 1083eqtr3d 2652 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∅c0 3874  ifcif 4036  {csn 4125  ⟨cop 4131   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037  ran crn 5039   Fn wfn 5799  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  2𝑜c2o 7441   +𝑐 ccda 8872  Basecbs 15695  Scalarcsca 15771  Xscprds 15929   ×s cxps 15989 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931 This theorem is referenced by:  xpsadd  16059  xpsmul  16060
 Copyright terms: Public domain W3C validator