Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpindir Structured version   Visualization version   GIF version

Theorem xpindir 5178
 Description: Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindir ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))

Proof of Theorem xpindir
StepHypRef Expression
1 inxp 5176 . 2 ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) = ((𝐴𝐵) × (𝐶𝐶))
2 inidm 3784 . . 3 (𝐶𝐶) = 𝐶
32xpeq2i 5060 . 2 ((𝐴𝐵) × (𝐶𝐶)) = ((𝐴𝐵) × 𝐶)
41, 3eqtr2i 2633 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∩ cin 3539   × cxp 5036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-rel 5045 This theorem is referenced by:  resres  5329  resindi  5332  imainrect  5494  resdmres  5543  cdaassen  8887  txhaus  21260  ustund  21835
 Copyright terms: Public domain W3C validator