MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpid11 Structured version   Visualization version   GIF version

Theorem xpid11 5268
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpid11 ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)

Proof of Theorem xpid11
StepHypRef Expression
1 dmeq 5246 . . 3 ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵))
2 dmxpid 5266 . . 3 dom (𝐴 × 𝐴) = 𝐴
3 dmxpid 5266 . . 3 dom (𝐵 × 𝐵) = 𝐵
41, 2, 33eqtr3g 2667 . 2 ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵)
5 xpeq12 5058 . . 3 ((𝐴 = 𝐵𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵))
65anidms 675 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
74, 6impbii 198 1 ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475   × cxp 5036  dom cdm 5038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-dm 5048
This theorem is referenced by:  intopsn  17076  grporn  26759  ismndo2  32843  rngosn3  32893  rngomndo  32904
  Copyright terms: Public domain W3C validator