Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpchomfval Structured version   Visualization version   GIF version

Theorem xpchomfval 16642
 Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpchomfval.t 𝑇 = (𝐶 ×c 𝐷)
xpchomfval.y 𝐵 = (Base‘𝑇)
xpchomfval.h 𝐻 = (Hom ‘𝐶)
xpchomfval.j 𝐽 = (Hom ‘𝐷)
xpchomfval.k 𝐾 = (Hom ‘𝑇)
Assertion
Ref Expression
xpchomfval 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))
Distinct variable groups:   𝑣,𝑢,𝐵   𝑢,𝐶,𝑣   𝑢,𝐷,𝑣   𝑢,𝐻,𝑣   𝑢,𝐽,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐾(𝑣,𝑢)

Proof of Theorem xpchomfval
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpchomfval.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2610 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2610 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 xpchomfval.h . . . 4 𝐻 = (Hom ‘𝐶)
5 xpchomfval.j . . . 4 𝐽 = (Hom ‘𝐷)
6 eqid 2610 . . . 4 (comp‘𝐶) = (comp‘𝐶)
7 eqid 2610 . . . 4 (comp‘𝐷) = (comp‘𝐷)
8 simpl 472 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V)
9 simpr 476 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V)
10 xpchomfval.y . . . . . 6 𝐵 = (Base‘𝑇)
111, 2, 3xpcbas 16641 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
1210, 11eqtr4i 2635 . . . . 5 𝐵 = ((Base‘𝐶) × (Base‘𝐷))
1312a1i 11 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ((Base‘𝐶) × (Base‘𝐷)))
14 eqidd 2611 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))) = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))))
15 eqidd 2611 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15xpcval 16640 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 catstr 16440 . . 3 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩} Struct ⟨1, 15⟩
18 homid 15898 . . 3 Hom = Slot (Hom ‘ndx)
19 snsstp2 4288 . . 3 {⟨(Hom ‘ndx), (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩}
20 fvex 6113 . . . . . 6 (Base‘𝑇) ∈ V
2110, 20eqeltri 2684 . . . . 5 𝐵 ∈ V
2221, 21mpt2ex 7136 . . . 4 (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))) ∈ V
2322a1i 11 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))) ∈ V)
24 xpchomfval.k . . 3 𝐾 = (Hom ‘𝑇)
2516, 17, 18, 19, 23, 24strfv3 15736 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))))
26 mpt20 6623 . . . 4 (𝑢 ∈ ∅, 𝑣 ∈ ∅ ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))) = ∅
2726eqcomi 2619 . . 3 ∅ = (𝑢 ∈ ∅, 𝑣 ∈ ∅ ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))
28 fnxpc 16639 . . . . . . . 8 ×c Fn (V × V)
29 fndm 5904 . . . . . . . 8 ( ×c Fn (V × V) → dom ×c = (V × V))
3028, 29ax-mp 5 . . . . . . 7 dom ×c = (V × V)
3130ndmov 6716 . . . . . 6 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅)
321, 31syl5eq 2656 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅)
3332fveq2d 6107 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Hom ‘𝑇) = (Hom ‘∅))
3418str0 15739 . . . 4 ∅ = (Hom ‘∅)
3533, 24, 343eqtr4g 2669 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = ∅)
3632fveq2d 6107 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅))
37 base0 15740 . . . . 5 ∅ = (Base‘∅)
3836, 10, 373eqtr4g 2669 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ∅)
39 eqidd 2611 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))) = (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))
4038, 38, 39mpt2eq123dv 6615 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))) = (𝑢 ∈ ∅, 𝑣 ∈ ∅ ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))))
4127, 35, 403eqtr4a 2670 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣)))))
4225, 41pm2.61i 175 1 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  {ctp 4129  ⟨cop 4131   × cxp 5036  dom cdm 5038   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  1c1 9816  5c5 10950  ;cdc 11369  ndxcnx 15692  Basecbs 15695  Hom chom 15779  compcco 15780   ×c cxpc 16631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-xpc 16635 This theorem is referenced by:  xpchom  16643  relxpchom  16644  xpccofval  16645  catcxpccl  16670  xpcpropd  16671
 Copyright terms: Public domain W3C validator