MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem3 Structured version   Visualization version   GIF version

Theorem xmulasslem3 11988
Description: Lemma for xmulass 11989. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulasslem3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))

Proof of Theorem xmulasslem3
StepHypRef Expression
1 recn 9905 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 9905 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 9905 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 mulass 9903 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
51, 2, 3, 4syl3an 1360 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
653expa 1257 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
7 remulcl 9900 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
8 rexmul 11973 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) ·e 𝐶) = ((𝐴 · 𝐵) · 𝐶))
97, 8sylan 487 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) ·e 𝐶) = ((𝐴 · 𝐵) · 𝐶))
10 remulcl 9900 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
11 rexmul 11973 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (𝐴 ·e (𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶)))
1210, 11sylan2 490 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e (𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶)))
1312anassrs 678 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶)))
146, 9, 133eqtr4d 2654 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 · 𝐶)))
15 rexmul 11973 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
1615adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
1716oveq1d 6564 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = ((𝐴 · 𝐵) ·e 𝐶))
18 rexmul 11973 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
1918adantll 746 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
2019oveq2d 6565 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e (𝐵 · 𝐶)))
2114, 17, 203eqtr4d 2654 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
2221adantll 746 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
23 oveq2 6557 . . . . . . . . 9 (𝐶 = +∞ → ((𝐴 ·e 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐵) ·e +∞))
24 simp1l 1078 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ*)
25 simp2l 1080 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐵 ∈ ℝ*)
26 xmulcl 11975 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
2724, 25, 26syl2anc 691 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ·e 𝐵) ∈ ℝ*)
28 xmulgt0 11985 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
29283adant3 1074 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < (𝐴 ·e 𝐵))
30 xmulpnf1 11976 . . . . . . . . . 10 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ 0 < (𝐴 ·e 𝐵)) → ((𝐴 ·e 𝐵) ·e +∞) = +∞)
3127, 29, 30syl2anc 691 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e +∞) = +∞)
3223, 31sylan9eqr 2666 . . . . . . . 8 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = +∞)
33 simpl1 1057 . . . . . . . . 9 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 ∈ ℝ* ∧ 0 < 𝐴))
34 xmulpnf1 11976 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3533, 34syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 ·e +∞) = +∞)
3632, 35eqtr4d 2647 . . . . . . 7 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e +∞))
37 oveq2 6557 . . . . . . . . 9 (𝐶 = +∞ → (𝐵 ·e 𝐶) = (𝐵 ·e +∞))
38 xmulpnf1 11976 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (𝐵 ·e +∞) = +∞)
39383ad2ant2 1076 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐵 ·e +∞) = +∞)
4037, 39sylan9eqr 2666 . . . . . . . 8 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐵 ·e 𝐶) = +∞)
4140oveq2d 6565 . . . . . . 7 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e +∞))
4236, 41eqtr4d 2647 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
4342adantlr 747 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
44 simpl3r 1110 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < 𝐶)
45 xmulasslem2 11984 . . . . . 6 ((0 < 𝐶𝐶 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
4644, 45sylan 487 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
47 simp3l 1082 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ*)
48 elxr 11826 . . . . . . 7 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4947, 48sylib 207 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
5049adantr 480 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
5122, 43, 46, 50mpjao3dan 1387 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
5251anassrs 678 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
53 xmulpnf2 11977 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞)
54533ad2ant3 1077 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e 𝐶) = +∞)
55343ad2ant1 1075 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ·e +∞) = +∞)
5654, 55eqtr4d 2647 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e 𝐶) = (𝐴 ·e +∞))
5756adantr 480 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (+∞ ·e 𝐶) = (𝐴 ·e +∞))
58 oveq2 6557 . . . . . . 7 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
5958, 55sylan9eqr 2666 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
6059oveq1d 6564 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (+∞ ·e 𝐶))
61 oveq1 6556 . . . . . . 7 (𝐵 = +∞ → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶))
6261, 54sylan9eqr 2666 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = +∞)
6362oveq2d 6565 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → (𝐴 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e +∞))
6457, 60, 633eqtr4d 2654 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
6564adantlr 747 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
66 simpl2r 1108 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) → 0 < 𝐵)
67 xmulasslem2 11984 . . . 4 ((0 < 𝐵𝐵 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
6866, 67sylan 487 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
69 elxr 11826 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7025, 69sylib 207 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7170adantr 480 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7252, 65, 68, 71mpjao3dan 1387 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 ∈ ℝ) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
73 simpl3 1059 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (𝐶 ∈ ℝ* ∧ 0 < 𝐶))
7473, 53syl 17 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) = +∞)
75 oveq1 6556 . . . . 5 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
76 xmulpnf2 11977 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
77763ad2ant2 1076 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e 𝐵) = +∞)
7875, 77sylan9eqr 2666 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = +∞)
7978oveq1d 6564 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (+∞ ·e 𝐶))
80 oveq1 6556 . . . 4 (𝐴 = +∞ → (𝐴 ·e (𝐵 ·e 𝐶)) = (+∞ ·e (𝐵 ·e 𝐶)))
81 xmulcl 11975 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
8225, 47, 81syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐵 ·e 𝐶) ∈ ℝ*)
83 xmulgt0 11985 . . . . . 6 (((𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < (𝐵 ·e 𝐶))
84833adant1 1072 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < (𝐵 ·e 𝐶))
85 xmulpnf2 11977 . . . . 5 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ 0 < (𝐵 ·e 𝐶)) → (+∞ ·e (𝐵 ·e 𝐶)) = +∞)
8682, 84, 85syl2anc 691 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (+∞ ·e (𝐵 ·e 𝐶)) = +∞)
8780, 86sylan9eqr 2666 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 ·e 𝐶)) = +∞)
8874, 79, 873eqtr4d 2654 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
89 simp1r 1079 . . 3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < 𝐴)
90 xmulasslem2 11984 . . 3 ((0 < 𝐴𝐴 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
9189, 90sylan 487 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐴 = -∞) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
92 elxr 11826 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
9324, 92sylib 207 . 2 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
9472, 88, 91, 93mpjao3dan 1387 1 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953   ·e cxmu 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-xmul 11824
This theorem is referenced by:  xmulass  11989
  Copyright terms: Public domain W3C validator