Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmstrkgc | Structured version Visualization version GIF version |
Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.) |
Ref | Expression |
---|---|
xmstrkgc | ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . 2 ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ V) | |
2 | eqid 2610 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | eqid 2610 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 2, 3 | xmssym 22080 | . . . . 5 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥)) |
5 | 4 | 3expb 1258 | . . . 4 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥)) |
6 | 5 | ralrimivva 2954 | . . 3 ⊢ (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥)) |
7 | simpl 472 | . . . . . . . 8 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ ∞MetSp) | |
8 | simpr3 1062 | . . . . . . . 8 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺)) | |
9 | equid 1926 | . . . . . . . . 9 ⊢ 𝑧 = 𝑧 | |
10 | 2, 3 | xmseq0 22079 | . . . . . . . . 9 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑧(dist‘𝐺)𝑧) = 0 ↔ 𝑧 = 𝑧)) |
11 | 9, 10 | mpbiri 247 | . . . . . . . 8 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑧(dist‘𝐺)𝑧) = 0) |
12 | 7, 8, 8, 11 | syl3anc 1318 | . . . . . . 7 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(dist‘𝐺)𝑧) = 0) |
13 | 12 | eqeq2d 2620 | . . . . . 6 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ (𝑥(dist‘𝐺)𝑦) = 0)) |
14 | 2, 3 | xmseq0 22079 | . . . . . . 7 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
15 | 14 | 3adant3r3 1268 | . . . . . 6 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
16 | 13, 15 | bitrd 267 | . . . . 5 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ 𝑥 = 𝑦)) |
17 | 16 | biimpd 218 | . . . 4 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)) |
18 | 17 | ralrimivvva 2955 | . . 3 ⊢ (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)) |
19 | 6, 18 | jca 553 | . 2 ⊢ (𝐺 ∈ ∞MetSp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))) |
20 | eqid 2610 | . . 3 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
21 | 2, 3, 20 | istrkgc 25153 | . 2 ⊢ (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)))) |
22 | 1, 19, 21 | sylanbrc 695 | 1 ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ‘cfv 5804 (class class class)co 6549 0cc0 9815 Basecbs 15695 distcds 15777 ∞MetSpcxme 21932 TarskiGCcstrkgc 25130 Itvcitv 25135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-xms 21935 df-trkgc 25147 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |