Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmetres | Structured version Visualization version GIF version |
Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmetres | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 21944 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | fdm 5964 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋)) | |
3 | metreslem 21977 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
5 | inss1 3795 | . . 3 ⊢ (𝑋 ∩ 𝑅) ⊆ 𝑋 | |
6 | xmetres2 21976 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋 ∩ 𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (∞Met‘(𝑋 ∩ 𝑅))) | |
7 | 5, 6 | mpan2 703 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
8 | 4, 7 | eqeltrd 2688 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ⊆ wss 3540 × cxp 5036 dom cdm 5038 ↾ cres 5040 ⟶wf 5800 ‘cfv 5804 ℝ*cxr 9952 ∞Metcxmt 19552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-xr 9957 df-xmet 19560 |
This theorem is referenced by: blres 22046 ressxms 22140 cfilresi 22901 caussi 22903 causs 22904 minvecolem4a 27117 |
Copyright terms: Public domain | W3C validator |