MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemul1 Structured version   Visualization version   GIF version

Theorem xlemul1 11992
Description: Extended real version of lemul1 10754. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xlemul1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))

Proof of Theorem xlemul1
StepHypRef Expression
1 rpxr 11716 . . . 4 (𝐶 ∈ ℝ+𝐶 ∈ ℝ*)
2 rpge0 11721 . . . 4 (𝐶 ∈ ℝ+ → 0 ≤ 𝐶)
31, 2jca 553 . . 3 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
4 xlemul1a 11990 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
54ex 449 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
63, 5syl3an3 1353 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
7 simp1 1054 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ*)
813ad2ant3 1077 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ*)
9 xmulcl 11975 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
107, 8, 9syl2anc 691 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 𝐶) ∈ ℝ*)
11 simp2 1055 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ*)
12 xmulcl 11975 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
1311, 8, 12syl2anc 691 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 𝐶) ∈ ℝ*)
14 rpreccl 11733 . . . . . 6 (𝐶 ∈ ℝ+ → (1 / 𝐶) ∈ ℝ+)
15143ad2ant3 1077 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ+)
16 rpxr 11716 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → (1 / 𝐶) ∈ ℝ*)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ*)
18 rpge0 11721 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → 0 ≤ (1 / 𝐶))
1915, 18syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 0 ≤ (1 / 𝐶))
20 xlemul1a 11990 . . . . 5 ((((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) ∧ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)))
2120ex 449 . . . 4 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
2210, 13, 17, 19, 21syl112anc 1322 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
23 xmulass 11989 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
247, 8, 17, 23syl3anc 1318 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
25 rpre 11715 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
26253ad2ant3 1077 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
2715rpred 11748 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ)
28 rexmul 11973 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
2926, 27, 28syl2anc 691 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
3026recnd 9947 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
31 rpne0 11724 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ≠ 0)
32313ad2ant3 1077 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
3330, 32recidd 10675 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 · (1 / 𝐶)) = 1)
3429, 33eqtrd 2644 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = 1)
3534oveq2d 6565 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e (𝐶 ·e (1 / 𝐶))) = (𝐴 ·e 1))
36 xmulid1 11981 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
377, 36syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 1) = 𝐴)
3824, 35, 373eqtrd 2648 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = 𝐴)
39 xmulass 11989 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4011, 8, 17, 39syl3anc 1318 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4134oveq2d 6565 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e (𝐶 ·e (1 / 𝐶))) = (𝐵 ·e 1))
42 xmulid1 11981 . . . . . 6 (𝐵 ∈ ℝ* → (𝐵 ·e 1) = 𝐵)
4311, 42syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 1) = 𝐵)
4440, 41, 433eqtrd 2648 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = 𝐵)
4538, 44breq12d 4596 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) ↔ 𝐴𝐵))
4622, 45sylibd 228 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → 𝐴𝐵))
476, 46impbid 201 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  *cxr 9952  cle 9954   / cdiv 10563  +crp 11708   ·e cxmu 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-rp 11709  df-xneg 11822  df-xmul 11824
This theorem is referenced by:  xlemul2  11993  xltmul1  11994  nmoleub2lem  22722  xrmulc1cn  29304
  Copyright terms: Public domain W3C validator