MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddilem Structured version   Visualization version   GIF version

Theorem xadddilem 11996
Description: Lemma for xadddi 11997. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddilem (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddilem
StepHypRef Expression
1 simpl1 1057 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 recn 9905 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 9905 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 recn 9905 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
5 adddi 9904 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
62, 3, 4, 5syl3an 1360 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
763expa 1257 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
8 readdcl 9898 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
9 rexmul 11973 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 ·e (𝐵 + 𝐶)) = (𝐴 · (𝐵 + 𝐶)))
108, 9sylan2 490 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e (𝐵 + 𝐶)) = (𝐴 · (𝐵 + 𝐶)))
1110anassrs 678 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 + 𝐶)) = (𝐴 · (𝐵 + 𝐶)))
12 remulcl 9900 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1312adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
14 remulcl 9900 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
1514adantlr 747 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
16 rexadd 11937 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1713, 15, 16syl2anc 691 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
187, 11, 173eqtr4d 2654 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 + 𝐶)) = ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)))
19 rexadd 11937 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2019adantll 746 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2120oveq2d 6565 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 + 𝐶)))
22 rexmul 11973 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
2322adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
24 rexmul 11973 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
2524adantlr 747 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
2623, 25oveq12d 6567 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)))
2718, 21, 263eqtr4d 2654 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
281, 27sylanl1 680 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
29 rexr 9964 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
30293ad2ant1 1075 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
31 xmulpnf1 11976 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3230, 31sylan 487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3332adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e +∞) = +∞)
3422, 12eqeltrd 2688 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) ∈ ℝ)
351, 34sylan 487 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) ∈ ℝ)
36 rexr 9964 . . . . . . . 8 ((𝐴 ·e 𝐵) ∈ ℝ → (𝐴 ·e 𝐵) ∈ ℝ*)
37 renemnf 9967 . . . . . . . 8 ((𝐴 ·e 𝐵) ∈ ℝ → (𝐴 ·e 𝐵) ≠ -∞)
38 xaddpnf1 11931 . . . . . . . 8 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐵) ≠ -∞) → ((𝐴 ·e 𝐵) +𝑒 +∞) = +∞)
3936, 37, 38syl2anc 691 . . . . . . 7 ((𝐴 ·e 𝐵) ∈ ℝ → ((𝐴 ·e 𝐵) +𝑒 +∞) = +∞)
4035, 39syl 17 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 +∞) = +∞)
4133, 40eqtr4d 2647 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e +∞) = ((𝐴 ·e 𝐵) +𝑒 +∞))
4241adantr 480 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e +∞) = ((𝐴 ·e 𝐵) +𝑒 +∞))
43 oveq2 6557 . . . . . 6 (𝐶 = +∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
44 rexr 9964 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
45 renemnf 9967 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
46 xaddpnf1 11931 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4744, 45, 46syl2anc 691 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 +𝑒 +∞) = +∞)
4847adantl 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
4943, 48sylan9eqr 2666 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
5049oveq2d 6565 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
51 oveq2 6557 . . . . . 6 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
5251, 33sylan9eqr 2666 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e 𝐶) = +∞)
5352oveq2d 6565 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 +∞))
5442, 50, 533eqtr4d 2654 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulmnf1 11978 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞)
5630, 55sylan 487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞)
5756adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e -∞) = -∞)
5857adantr 480 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e -∞) = -∞)
5935adantr 480 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e 𝐵) ∈ ℝ)
60 renepnf 9966 . . . . . . 7 ((𝐴 ·e 𝐵) ∈ ℝ → (𝐴 ·e 𝐵) ≠ +∞)
61 xaddmnf1 11933 . . . . . . 7 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐵) ≠ +∞) → ((𝐴 ·e 𝐵) +𝑒 -∞) = -∞)
6236, 60, 61syl2anc 691 . . . . . 6 ((𝐴 ·e 𝐵) ∈ ℝ → ((𝐴 ·e 𝐵) +𝑒 -∞) = -∞)
6359, 62syl 17 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 -∞) = -∞)
6458, 63eqtr4d 2647 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e -∞) = ((𝐴 ·e 𝐵) +𝑒 -∞))
65 oveq2 6557 . . . . . 6 (𝐶 = -∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 -∞))
66 renepnf 9966 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
67 xaddmnf1 11933 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
6844, 66, 67syl2anc 691 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 +𝑒 -∞) = -∞)
6968adantl 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -∞) = -∞)
7065, 69sylan9eqr 2666 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
7170oveq2d 6565 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
72 oveq2 6557 . . . . . 6 (𝐶 = -∞ → (𝐴 ·e 𝐶) = (𝐴 ·e -∞))
7372, 57sylan9eqr 2666 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e 𝐶) = -∞)
7473oveq2d 6565 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 -∞))
7564, 71, 743eqtr4d 2654 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
76 simpl3 1059 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → 𝐶 ∈ ℝ*)
77 elxr 11826 . . . . 5 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
7876, 77sylib 207 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
7978adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
8028, 54, 75, 79mpjao3dan 1387 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
8132ad2antrr 758 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e +∞) = +∞)
821adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
8324, 14eqeltrd 2688 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) ∈ ℝ)
8482, 83sylan 487 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) ∈ ℝ)
85 rexr 9964 . . . . . . 7 ((𝐴 ·e 𝐶) ∈ ℝ → (𝐴 ·e 𝐶) ∈ ℝ*)
86 renemnf 9967 . . . . . . 7 ((𝐴 ·e 𝐶) ∈ ℝ → (𝐴 ·e 𝐶) ≠ -∞)
87 xaddpnf2 11932 . . . . . . 7 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐴 ·e 𝐶)) = +∞)
8885, 86, 87syl2anc 691 . . . . . 6 ((𝐴 ·e 𝐶) ∈ ℝ → (+∞ +𝑒 (𝐴 ·e 𝐶)) = +∞)
8984, 88syl 17 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (+∞ +𝑒 (𝐴 ·e 𝐶)) = +∞)
9081, 89eqtr4d 2647 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e +∞) = (+∞ +𝑒 (𝐴 ·e 𝐶)))
91 simpr 476 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
9291oveq1d 6564 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
93 rexr 9964 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
94 renemnf 9967 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
95 xaddpnf2 11932 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
9693, 94, 95syl2anc 691 . . . . . 6 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
9792, 96sylan9eq 2664 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = +∞)
9897oveq2d 6565 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
99 oveq2 6557 . . . . . . 7 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
10099, 32sylan9eqr 2666 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
101100adantr 480 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = +∞)
102101oveq1d 6564 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (+∞ +𝑒 (𝐴 ·e 𝐶)))
10390, 98, 1023eqtr4d 2654 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
104 pnfxr 9971 . . . . . . 7 +∞ ∈ ℝ*
105 pnfnemnf 9973 . . . . . . 7 +∞ ≠ -∞
106 xaddpnf1 11931 . . . . . . 7 ((+∞ ∈ ℝ* ∧ +∞ ≠ -∞) → (+∞ +𝑒 +∞) = +∞)
107104, 105, 106mp2an 704 . . . . . 6 (+∞ +𝑒 +∞) = +∞
10832, 32oveq12d 6567 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)) = (+∞ +𝑒 +∞))
109107, 108, 323eqtr4a 2670 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)) = (𝐴 ·e +∞))
110109ad2antrr 758 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)) = (𝐴 ·e +∞))
11199, 51oveqan12d 6568 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)))
112111adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)))
113 oveq12 6558 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 +∞))
114113, 107syl6eq 2660 . . . . . 6 ((𝐵 = +∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
115114oveq2d 6565 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
116115adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
117110, 112, 1163eqtr4rd 2655 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
118 pnfaddmnf 11935 . . . . . 6 (+∞ +𝑒 -∞) = 0
11932, 56oveq12d 6567 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)) = (+∞ +𝑒 -∞))
120 xmul01 11969 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
1211, 29, 1203syl 18 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e 0) = 0)
122118, 119, 1213eqtr4a 2670 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e 0))
123122ad2antrr 758 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e 0))
12499, 72oveqan12d 6568 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)))
125124adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)))
126 oveq12 6558 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 -∞))
127126, 118syl6eq 2660 . . . . . 6 ((𝐵 = +∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = 0)
128127oveq2d 6565 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
129128adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
130123, 125, 1293eqtr4rd 2655 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
13178adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
132103, 117, 130, 131mpjao3dan 1387 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
13356ad2antrr 758 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e -∞) = -∞)
1341adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ)
135134, 83sylan 487 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) ∈ ℝ)
136 renepnf 9966 . . . . . . 7 ((𝐴 ·e 𝐶) ∈ ℝ → (𝐴 ·e 𝐶) ≠ +∞)
137 xaddmnf2 11934 . . . . . . 7 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ≠ +∞) → (-∞ +𝑒 (𝐴 ·e 𝐶)) = -∞)
13885, 136, 137syl2anc 691 . . . . . 6 ((𝐴 ·e 𝐶) ∈ ℝ → (-∞ +𝑒 (𝐴 ·e 𝐶)) = -∞)
139135, 138syl 17 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (-∞ +𝑒 (𝐴 ·e 𝐶)) = -∞)
140133, 139eqtr4d 2647 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e -∞) = (-∞ +𝑒 (𝐴 ·e 𝐶)))
141 simpr 476 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → 𝐵 = -∞)
142141oveq1d 6564 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
143 renepnf 9966 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
144 xaddmnf2 11934 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
14593, 143, 144syl2anc 691 . . . . . 6 (𝐶 ∈ ℝ → (-∞ +𝑒 𝐶) = -∞)
146142, 145sylan9eq 2664 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = -∞)
147146oveq2d 6565 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
148 oveq2 6557 . . . . . . 7 (𝐵 = -∞ → (𝐴 ·e 𝐵) = (𝐴 ·e -∞))
149148, 56sylan9eqr 2666 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐵) = -∞)
150149adantr 480 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = -∞)
151150oveq1d 6564 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-∞ +𝑒 (𝐴 ·e 𝐶)))
152140, 147, 1513eqtr4d 2654 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
15356, 32oveq12d 6567 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)) = (-∞ +𝑒 +∞))
154 mnfaddpnf 11936 . . . . . . 7 (-∞ +𝑒 +∞) = 0
155153, 154syl6eq 2660 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)) = 0)
156121, 155eqtr4d 2647 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e 0) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
157156ad2antrr 758 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → (𝐴 ·e 0) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
158 oveq12 6558 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 +∞))
159158, 154syl6eq 2660 . . . . . 6 ((𝐵 = -∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = 0)
160159oveq2d 6565 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
161160adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
162148, 51oveqan12d 6568 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
163162adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
164157, 161, 1633eqtr4d 2654 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
165 mnfxr 9975 . . . . . . 7 -∞ ∈ ℝ*
166 mnfnepnf 9974 . . . . . . 7 -∞ ≠ +∞
167 xaddmnf1 11933 . . . . . . 7 ((-∞ ∈ ℝ* ∧ -∞ ≠ +∞) → (-∞ +𝑒 -∞) = -∞)
168165, 166, 167mp2an 704 . . . . . 6 (-∞ +𝑒 -∞) = -∞
16956, 56oveq12d 6567 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)) = (-∞ +𝑒 -∞))
170168, 169, 563eqtr4a 2670 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e -∞))
171170ad2antrr 758 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e -∞))
172148, 72oveqan12d 6568 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)))
173172adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)))
174 oveq12 6558 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 -∞))
175174, 168syl6eq 2660 . . . . . 6 ((𝐵 = -∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
176175oveq2d 6565 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
177176adantll 746 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
178171, 173, 1773eqtr4rd 2655 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
17978adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
180152, 164, 178, 179mpjao3dan 1387 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
181 simpl2 1058 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
182 elxr 11826 . . 3 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
183181, 182sylib 207 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
18480, 132, 180, 183mpjao3dan 1387 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953   +𝑒 cxad 11820   ·e cxmu 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-xneg 11822  df-xadd 11823  df-xmul 11824
This theorem is referenced by:  xadddi  11997
  Copyright terms: Public domain W3C validator