Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi2 Structured version   Visualization version   GIF version

 Description: The assumption that the multiplier be real in xadddi 11997 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

StepHypRef Expression
1 simpr 476 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simp2l 1080 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
32ad2antrr 758 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
4 simp3l 1082 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
54ad2antrr 758 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐶 ∈ ℝ*)
6 xadddi 11997 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
71, 3, 5, 6syl3anc 1318 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
8 pnfxr 9971 . . . . . 6 +∞ ∈ ℝ*
94adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ*)
109adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
11 xmulcl 11975 . . . . . 6 ((+∞ ∈ ℝ*𝐶 ∈ ℝ*) → (+∞ ·e 𝐶) ∈ ℝ*)
128, 10, 11sylancr 694 . . . . 5 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) ∈ ℝ*)
138, 9, 11sylancr 694 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ∈ ℝ*)
14 simpl3r 1110 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ 𝐶)
15 0lepnf 11842 . . . . . . . . 9 0 ≤ +∞
16 xmulge0 11986 . . . . . . . . 9 (((+∞ ∈ ℝ* ∧ 0 ≤ +∞) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ (+∞ ·e 𝐶))
178, 15, 16mpanl12 714 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 0 ≤ (+∞ ·e 𝐶))
189, 14, 17syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ (+∞ ·e 𝐶))
19 ge0nemnf 11878 . . . . . . 7 (((+∞ ·e 𝐶) ∈ ℝ* ∧ 0 ≤ (+∞ ·e 𝐶)) → (+∞ ·e 𝐶) ≠ -∞)
2013, 18, 19syl2anc 691 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ≠ -∞)
2120adantr 480 . . . . 5 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) ≠ -∞)
22 xaddpnf2 11932 . . . . 5 (((+∞ ·e 𝐶) ∈ ℝ* ∧ (+∞ ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
2312, 21, 22syl2anc 691 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
24 oveq1 6556 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
25 oveq1 6556 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐶) = (+∞ ·e 𝐶))
2624, 25oveq12d 6567 . . . . 5 (𝐴 = +∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)))
27 xmulpnf2 11977 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
282, 27sylan 487 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2928oveq1d 6564 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
3026, 29sylan9eqr 2666 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
31 oveq1 6556 . . . . 5 (𝐴 = +∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (+∞ ·e (𝐵 +𝑒 𝐶)))
32 xaddcl 11944 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
332, 4, 32syl2anc 691 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
3433adantr 480 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
35 0xr 9965 . . . . . . . 8 0 ∈ ℝ*
3635a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
372adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
38 simpr 476 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < 𝐵)
39 xaddid1 11946 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 +𝑒 0) = 𝐵)
4037, 39syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) = 𝐵)
41 xleadd2a 11956 . . . . . . . . 9 (((0 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐶) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
4236, 9, 37, 14, 41syl31anc 1321 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
4340, 42eqbrtrrd 4607 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
4436, 37, 34, 38, 43xrltletrd 11868 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < (𝐵 +𝑒 𝐶))
45 xmulpnf2 11977 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4634, 44, 45syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4731, 46sylan9eqr 2666 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = +∞)
4823, 30, 473eqtr4rd 2655 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
49 mnfxr 9975 . . . . . . 7 -∞ ∈ ℝ*
50 xmulcl 11975 . . . . . . 7 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-∞ ·e 𝐶) ∈ ℝ*)
5149, 9, 50sylancr 694 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ∈ ℝ*)
52 xnegmnf 11915 . . . . . . . . . . . 12 -𝑒-∞ = +∞
5352oveq1i 6559 . . . . . . . . . . 11 (-𝑒-∞ ·e 𝐶) = (+∞ ·e 𝐶)
54 xmulneg1 11971 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5549, 9, 54sylancr 694 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5653, 55syl5reqr 2659 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒(-∞ ·e 𝐶) = (+∞ ·e 𝐶))
57 xnegpnf 11914 . . . . . . . . . . 11 -𝑒+∞ = -∞
5857a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒+∞ = -∞)
5956, 58eqeq12d 2625 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (+∞ ·e 𝐶) = -∞))
60 xneg11 11920 . . . . . . . . . 10 (((-∞ ·e 𝐶) ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
6151, 8, 60sylancl 693 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
6259, 61bitr3d 269 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) = -∞ ↔ (-∞ ·e 𝐶) = +∞))
6362necon3bid 2826 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) ≠ -∞ ↔ (-∞ ·e 𝐶) ≠ +∞))
6420, 63mpbid 221 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ≠ +∞)
65 xaddmnf2 11934 . . . . . 6 (((-∞ ·e 𝐶) ∈ ℝ* ∧ (-∞ ·e 𝐶) ≠ +∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6651, 64, 65syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6766adantr 480 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
68 oveq1 6556 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐵) = (-∞ ·e 𝐵))
69 oveq1 6556 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐶) = (-∞ ·e 𝐶))
7068, 69oveq12d 6567 . . . . 5 (𝐴 = -∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)))
71 xmulmnf2 11979 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
722, 71sylan 487 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
7372oveq1d 6564 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
7470, 73sylan9eqr 2666 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
75 oveq1 6556 . . . . 5 (𝐴 = -∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (-∞ ·e (𝐵 +𝑒 𝐶)))
76 xmulmnf2 11979 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7734, 44, 76syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7875, 77sylan9eqr 2666 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = -∞)
7967, 74, 783eqtr4rd 2655 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
80 simpl1 1057 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
81 elxr 11826 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
8280, 81sylib 207 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
837, 48, 79, 82mpjao3dan 1387 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
84 simp1 1054 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
85 xmulcl 11975 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
8684, 4, 85syl2anc 691 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 𝐶) ∈ ℝ*)
8786adantr 480 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐶) ∈ ℝ*)
88 xaddid2 11947 . . . 4 ((𝐴 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
8987, 88syl 17 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
90 oveq2 6557 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
9190eqcomd 2616 . . . . 5 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
92 xmul01 11969 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
93923ad2ant1 1075 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 0) = 0)
9491, 93sylan9eqr 2666 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
9594oveq1d 6564 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (0 +𝑒 (𝐴 ·e 𝐶)))
96 oveq1 6556 . . . . . 6 (0 = 𝐵 → (0 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
9796eqcomd 2616 . . . . 5 (0 = 𝐵 → (𝐵 +𝑒 𝐶) = (0 +𝑒 𝐶))
98 xaddid2 11947 . . . . . 6 (𝐶 ∈ ℝ* → (0 +𝑒 𝐶) = 𝐶)
994, 98syl 17 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 +𝑒 𝐶) = 𝐶)
10097, 99sylan9eqr 2666 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐵 +𝑒 𝐶) = 𝐶)
101100oveq2d 6565 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 𝐶))
10289, 95, 1013eqtr4rd 2655 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
103 simp2r 1081 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐵)
104 xrleloe 11853 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
10535, 2, 104sylancr 694 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
106103, 105mpbid 221 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 < 𝐵 ∨ 0 = 𝐵))
10783, 102, 106mpjaodan 823 1 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  (class class class)co 6549  ℝcr 9814  0cc0 9815  +∞cpnf 9950  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  -𝑒cxne 11819   +𝑒 cxad 11820   ·e cxmu 11821 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-xneg 11822  df-xadd 11823  df-xmul 11824 This theorem is referenced by:  xadddi2r  12000
 Copyright terms: Public domain W3C validator