Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xadd0ge | Structured version Visualization version GIF version |
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xadd0ge.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xadd0ge.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xadd0ge | ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd0ge.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddid1 11946 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) |
4 | 3 | eqcomd 2616 | . 2 ⊢ (𝜑 → 𝐴 = (𝐴 +𝑒 0)) |
5 | 0xr 9965 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ*) |
7 | 1, 6 | jca 553 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*)) |
8 | iccssxr 12127 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
9 | xadd0ge.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
10 | 8, 9 | sseldi 3566 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
11 | 1, 10 | jca 553 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
12 | 7, 11 | jca 553 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*))) |
13 | xrleid 11859 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
15 | pnfxr 9971 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → +∞ ∈ ℝ*) |
17 | iccgelb 12101 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
18 | 6, 16, 9, 17 | syl3anc 1318 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐵) |
19 | 14, 18 | jca 553 | . . 3 ⊢ (𝜑 → (𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵)) |
20 | xle2add 11961 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) → ((𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))) | |
21 | 12, 19, 20 | sylc 63 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)) |
22 | 4, 21 | eqbrtrd 4605 | 1 ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 0cc0 9815 +∞cpnf 9950 ℝ*cxr 9952 ≤ cle 9954 +𝑒 cxad 11820 [,]cicc 12049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-xadd 11823 df-icc 12053 |
This theorem is referenced by: xadd0ge2 38498 sge0xadd 39328 meassle 39356 ovnsubaddlem1 39460 |
Copyright terms: Public domain | W3C validator |