Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunres | Structured version Visualization version GIF version |
Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunres | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | resss 5342 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ⊆ 𝐴) |
5 | 1, 2, 4 | wunss 9413 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ⊆ wss 3540 ↾ cres 5040 WUnicwun 9401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-v 3175 df-in 3547 df-ss 3554 df-pw 4110 df-uni 4373 df-tr 4681 df-res 5050 df-wun 9403 |
This theorem is referenced by: wunsets 15728 |
Copyright terms: Public domain | W3C validator |