Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval Structured version   Visualization version   GIF version

Theorem wuncval 9443
 Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuncval (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
Distinct variable groups:   𝑢,𝐴   𝑢,𝑉

Proof of Theorem wuncval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝑉𝐴 ∈ V)
2 wunex 9440 . . . 4 (𝐴𝑉 → ∃𝑢 ∈ WUni 𝐴𝑢)
3 rabn0 3912 . . . 4 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴𝑢)
42, 3sylibr 223 . . 3 (𝐴𝑉 → {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅)
5 intex 4747 . . 3 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V)
64, 5sylib 207 . 2 (𝐴𝑉 {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V)
7 sseq1 3589 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑢𝐴𝑢))
87rabbidv 3164 . . . 4 (𝑥 = 𝐴 → {𝑢 ∈ WUni ∣ 𝑥𝑢} = {𝑢 ∈ WUni ∣ 𝐴𝑢})
98inteqd 4415 . . 3 (𝑥 = 𝐴 {𝑢 ∈ WUni ∣ 𝑥𝑢} = {𝑢 ∈ WUni ∣ 𝐴𝑢})
10 df-wunc 9404 . . 3 wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
119, 10fvmptg 6189 . 2 ((𝐴 ∈ V ∧ {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V) → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
121, 6, 11syl2anc 691 1 (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ∩ cint 4410  ‘cfv 5804  WUnicwun 9401  wUniClcwunm 9402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-wun 9403  df-wunc 9404 This theorem is referenced by:  wuncid  9444  wunccl  9445  wuncss  9446
 Copyright terms: Public domain W3C validator