Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnon 41050
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Hypothesis
Ref Expression
wwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnon ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑤   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑓,𝐺,𝑎,𝑏,𝑤   𝑓,𝑁
Allowed substitution hints:   𝑈(𝑤,𝑓,𝑎,𝑏)   𝑉(𝑤,𝑓)

Proof of Theorem wspthsnon
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsnon 41037 . . 3 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})))
3 fveq2 6103 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
4 wwlksnon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
53, 4syl6eqr 2662 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
65adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉)
7 oveq12 6558 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksNOn 𝑔) = (𝑁 WWalksNOn 𝐺))
87oveqd 6566 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎(𝑛 WWalksNOn 𝑔)𝑏) = (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
9 fveq2 6103 . . . . . . . . 9 (𝑔 = 𝐺 → (SPathsOn‘𝑔) = (SPathsOn‘𝐺))
109oveqd 6566 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(SPathsOn‘𝑔)𝑏) = (𝑎(SPathsOn‘𝐺)𝑏))
1110breqd 4594 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
1211adantl 481 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
1312exbidv 1837 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
148, 13rabeqbidv 3168 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤} = {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
156, 6, 14mpt2eq123dv 6615 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615adantl 481 . 2 (((𝑁 ∈ ℕ0𝐺𝑈) ∧ (𝑛 = 𝑁𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
17 simpl 472 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝑁 ∈ ℕ0)
18 elex 3185 . . 3 (𝐺𝑈𝐺 ∈ V)
1918adantl 481 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝐺 ∈ V)
20 fvex 6113 . . . . 5 (Vtx‘𝐺) ∈ V
214, 20eqeltri 2684 . . . 4 𝑉 ∈ V
2221, 21mpt2ex 7136 . . 3 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) ∈ V
2322a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) ∈ V)
242, 16, 17, 19, 23ovmpt2d 6686 1 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  {crab 2900  Vcvv 3173   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  0cn0 11169  Vtxcvtx 25673  SPathsOncspthson 40922   WWalksNOn cwwlksnon 41030   WSPathsNOn cwwspthsnon 41032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-wspthsnon 41037
This theorem is referenced by:  iswspthsnon  41052
  Copyright terms: Public domain W3C validator