Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdeqs1cat | Structured version Visualization version GIF version |
Description: Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 9-May-2020.) |
Ref | Expression |
---|---|
wrdeqs1cat | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (#‘𝑊)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐴) | |
2 | 1nn0 11185 | . . . 4 ⊢ 1 ∈ ℕ0 | |
3 | 0elfz 12305 | . . . 4 ⊢ (1 ∈ ℕ0 → 0 ∈ (0...1)) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 ∈ (0...1)) |
5 | wrdfin 13178 | . . . 4 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊 ∈ Fin) | |
6 | 1elfz0hash 13040 | . . . 4 ⊢ ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(#‘𝑊))) | |
7 | 5, 6 | sylan 487 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(#‘𝑊))) |
8 | lennncl 13180 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ) | |
9 | 8 | nnnn0d 11228 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ0) |
10 | eluzfz2 12220 | . . . . 5 ⊢ ((#‘𝑊) ∈ (ℤ≥‘0) → (#‘𝑊) ∈ (0...(#‘𝑊))) | |
11 | nn0uz 11598 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | eleq2s 2706 | . . . 4 ⊢ ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ (0...(#‘𝑊))) |
13 | 9, 12 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ (0...(#‘𝑊))) |
14 | ccatswrd 13308 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (0 ∈ (0...1) ∧ 1 ∈ (0...(#‘𝑊)) ∧ (#‘𝑊) ∈ (0...(#‘𝑊)))) → ((𝑊 substr 〈0, 1〉) ++ (𝑊 substr 〈1, (#‘𝑊)〉)) = (𝑊 substr 〈0, (#‘𝑊)〉)) | |
15 | 1, 4, 7, 13, 14 | syl13anc 1320 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈0, 1〉) ++ (𝑊 substr 〈1, (#‘𝑊)〉)) = (𝑊 substr 〈0, (#‘𝑊)〉)) |
16 | 0p1e1 11009 | . . . . . 6 ⊢ (0 + 1) = 1 | |
17 | 16 | opeq2i 4344 | . . . . 5 ⊢ 〈0, (0 + 1)〉 = 〈0, 1〉 |
18 | 17 | oveq2i 6560 | . . . 4 ⊢ (𝑊 substr 〈0, (0 + 1)〉) = (𝑊 substr 〈0, 1〉) |
19 | 0nn0 11184 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 ∈ ℕ0) |
21 | hashgt0 13038 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 < (#‘𝑊)) | |
22 | elfzo0 12376 | . . . . . 6 ⊢ (0 ∈ (0..^(#‘𝑊)) ↔ (0 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 0 < (#‘𝑊))) | |
23 | 20, 8, 21, 22 | syl3anbrc 1239 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 0 ∈ (0..^(#‘𝑊))) |
24 | swrds1 13303 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 0 ∈ (0..^(#‘𝑊))) → (𝑊 substr 〈0, (0 + 1)〉) = 〈“(𝑊‘0)”〉) | |
25 | 23, 24 | syldan 486 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, (0 + 1)〉) = 〈“(𝑊‘0)”〉) |
26 | 18, 25 | syl5eqr 2658 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, 1〉) = 〈“(𝑊‘0)”〉) |
27 | 26 | oveq1d 6564 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈0, 1〉) ++ (𝑊 substr 〈1, (#‘𝑊)〉)) = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (#‘𝑊)〉))) |
28 | swrdid 13280 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 substr 〈0, (#‘𝑊)〉) = 𝑊) | |
29 | 28 | adantr 480 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈0, (#‘𝑊)〉) = 𝑊) |
30 | 15, 27, 29 | 3eqtr3rd 2653 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊 = (〈“(𝑊‘0)”〉 ++ (𝑊 substr 〈1, (#‘𝑊)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 〈cop 4131 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 ℕcn 10897 ℕ0cn0 11169 ℤ≥cuz 11563 ...cfz 12197 ..^cfzo 12334 #chash 12979 Word cword 13146 ++ cconcat 13148 〈“cs1 13149 substr csubstr 13150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-substr 13158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |