Step | Hyp | Ref
| Expression |
1 | | wlkson.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | 1vgrex 25679 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
4 | | simpl 472 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
5 | 4, 1 | syl6eleq 2698 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | | simpr 476 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) |
7 | 6, 1 | syl6eleq 2698 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
8 | | 1wlksv 40824 |
. . . 4
⊢
{〈𝑓, 𝑝〉 ∣ 𝑓(1Walks‘𝐺)𝑝} ∈ V |
9 | 8 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {〈𝑓, 𝑝〉 ∣ 𝑓(1Walks‘𝐺)𝑝} ∈ V) |
10 | | simpr 476 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(1Walks‘𝐺)𝑝) → 𝑓(1Walks‘𝐺)𝑝) |
11 | | eqeq2 2621 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴)) |
12 | | eqeq2 2621 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝑝‘(#‘𝑓)) = 𝑏 ↔ (𝑝‘(#‘𝑓)) = 𝐵)) |
13 | 11, 12 | bi2anan9 913 |
. . 3
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))) |
14 | | biidd 251 |
. . 3
⊢ (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏))) |
15 | | df-wlkson 40802 |
. . . 4
⊢ WalksOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(1Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})) |
16 | | eqid 2610 |
. . . . . 6
⊢
(Vtx‘𝑔) =
(Vtx‘𝑔) |
17 | | 3anass 1035 |
. . . . . . . 8
⊢ ((𝑓(1Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(1Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏))) |
18 | | ancom 465 |
. . . . . . . 8
⊢ ((𝑓(1Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(1Walks‘𝑔)𝑝)) |
19 | 17, 18 | bitri 263 |
. . . . . . 7
⊢ ((𝑓(1Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(1Walks‘𝑔)𝑝)) |
20 | 19 | opabbii 4649 |
. . . . . 6
⊢
{〈𝑓, 𝑝〉 ∣ (𝑓(1Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)} = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(1Walks‘𝑔)𝑝)} |
21 | 16, 16, 20 | mpt2eq123i 6616 |
. . . . 5
⊢ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(1Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(1Walks‘𝑔)𝑝)}) |
22 | 21 | mpteq2i 4669 |
. . . 4
⊢ (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(1Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(1Walks‘𝑔)𝑝)})) |
23 | 15, 22 | eqtri 2632 |
. . 3
⊢ WalksOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(1Walks‘𝑔)𝑝)})) |
24 | 3, 5, 7, 9, 10, 13, 14, 23 | mptmpt2opabbrd 40335 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(1Walks‘𝐺)𝑝)}) |
25 | | ancom 465 |
. . . 4
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(1Walks‘𝐺)𝑝) ↔ (𝑓(1Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))) |
26 | | 3anass 1035 |
. . . 4
⊢ ((𝑓(1Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝑓(1Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))) |
27 | 25, 26 | bitr4i 266 |
. . 3
⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(1Walks‘𝐺)𝑝) ↔ (𝑓(1Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)) |
28 | 27 | opabbii 4649 |
. 2
⊢
{〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(1Walks‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(1Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} |
29 | 24, 28 | syl6eq 2660 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(1Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}) |