Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlknwwlksnfun | Structured version Visualization version GIF version |
Description: Lemma 1 for wlknwwlksnbij2 41089. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.) |
Ref | Expression |
---|---|
wlknwwlksnbij.t | ⊢ 𝑇 = {𝑝 ∈ (1Walks‘𝐺) ∣ (#‘(1st ‘𝑝)) = 𝑁} |
wlknwwlksnbij.w | ⊢ 𝑊 = (𝑁 WWalkSN 𝐺) |
wlknwwlksnbij.f | ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (2nd ‘𝑡)) |
Ref | Expression |
---|---|
wlknwwlksnfun | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇⟶𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . . . 7 ⊢ (𝑝 = 𝑡 → (1st ‘𝑝) = (1st ‘𝑡)) | |
2 | 1 | fveq2d 6107 | . . . . . 6 ⊢ (𝑝 = 𝑡 → (#‘(1st ‘𝑝)) = (#‘(1st ‘𝑡))) |
3 | 2 | eqeq1d 2612 | . . . . 5 ⊢ (𝑝 = 𝑡 → ((#‘(1st ‘𝑝)) = 𝑁 ↔ (#‘(1st ‘𝑡)) = 𝑁)) |
4 | wlknwwlksnbij.t | . . . . 5 ⊢ 𝑇 = {𝑝 ∈ (1Walks‘𝐺) ∣ (#‘(1st ‘𝑝)) = 𝑁} | |
5 | 3, 4 | elrab2 3333 | . . . 4 ⊢ (𝑡 ∈ 𝑇 ↔ (𝑡 ∈ (1Walks‘𝐺) ∧ (#‘(1st ‘𝑡)) = 𝑁)) |
6 | wlknewwlksn 41084 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑡 ∈ (1Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st ‘𝑡)) = 𝑁)) → (2nd ‘𝑡) ∈ (𝑁 WWalkSN 𝐺)) | |
7 | 6 | an4s 865 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝑡 ∈ (1Walks‘𝐺) ∧ (#‘(1st ‘𝑡)) = 𝑁)) → (2nd ‘𝑡) ∈ (𝑁 WWalkSN 𝐺)) |
8 | 5, 7 | sylan2b 491 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑡 ∈ 𝑇) → (2nd ‘𝑡) ∈ (𝑁 WWalkSN 𝐺)) |
9 | wlknwwlksnbij.w | . . 3 ⊢ 𝑊 = (𝑁 WWalkSN 𝐺) | |
10 | 8, 9 | syl6eleqr 2699 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑡 ∈ 𝑇) → (2nd ‘𝑡) ∈ 𝑊) |
11 | wlknwwlksnbij.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (2nd ‘𝑡)) | |
12 | 10, 11 | fmptd 6292 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇⟶𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 1st c1st 7057 2nd c2nd 7058 ℕ0cn0 11169 #chash 12979 UPGraph cupgr 25747 1Walksc1wlks 40796 WWalkSN cwwlksn 41029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-uhgr 25724 df-upgr 25749 df-edga 25793 df-1wlks 40800 df-wlks 40801 df-wwlks 41033 df-wwlksn 41034 |
This theorem is referenced by: wlknwwlksninj 41086 wlknwwlksnsur 41087 |
Copyright terms: Public domain | W3C validator |