MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdvspth Structured version   Visualization version   GIF version

Theorem wlkdvspth 26138
Description: A walk consisting of different vertices is a simple path. (Contributed by Alexander van der Vekens, 27-Oct-2017.)
Assertion
Ref Expression
wlkdvspth ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ Fun 𝑃) → 𝐹(𝑉 SPaths 𝐸)𝑃)

Proof of Theorem wlkdvspth
Dummy variables 𝑘 𝑒 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wlk 26036 . . . 4 Walks = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝑒𝑝:(0...(#‘𝑓))⟶𝑣 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝑒‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
21brovmpt2ex 7236 . . 3 (𝐹(𝑉 Walks 𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
3 simpr1 1060 . . . . . . . . . . 11 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹 ∈ Word dom 𝐸)
4 df-f1 5809 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...(#‘𝐹))–1-1𝑉 ↔ (𝑃:(0...(#‘𝐹))⟶𝑉 ∧ Fun 𝑃))
5 wlkdvspthlem 26137 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹)
653exp 1256 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ Word dom 𝐸 → (𝑃:(0...(#‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹)))
76com3l 87 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...(#‘𝐹))–1-1𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Word dom 𝐸 → Fun 𝐹)))
84, 7sylbir 224 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(#‘𝐹))⟶𝑉 ∧ Fun 𝑃) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Word dom 𝐸 → Fun 𝐹)))
98expcom 450 . . . . . . . . . . . . . . . 16 (Fun 𝑃 → (𝑃:(0...(#‘𝐹))⟶𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Word dom 𝐸 → Fun 𝐹))))
109com14 94 . . . . . . . . . . . . . . 15 (𝐹 ∈ Word dom 𝐸 → (𝑃:(0...(#‘𝐹))⟶𝑉 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (Fun 𝑃 → Fun 𝐹))))
11103imp 1249 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝑃 → Fun 𝐹))
1211com12 32 . . . . . . . . . . . . 13 (Fun 𝑃 → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹))
1312adantl 481 . . . . . . . . . . . 12 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹))
1413imp 444 . . . . . . . . . . 11 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → Fun 𝐹)
153, 14jca 553 . . . . . . . . . 10 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹))
16 simpr2 1061 . . . . . . . . . 10 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝑃:(0...(#‘𝐹))⟶𝑉)
17 simpr3 1062 . . . . . . . . . 10 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
1815, 16, 173jca 1235 . . . . . . . . 9 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
1918ex 449 . . . . . . . 8 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
20 iswlk 26048 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Walks 𝐸)𝑃 ↔ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
2120adantr 480 . . . . . . . 8 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → (𝐹(𝑉 Walks 𝐸)𝑃 ↔ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
22 istrl 26067 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Trails 𝐸)𝑃 ↔ ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
2322adantr 480 . . . . . . . 8 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → (𝐹(𝑉 Trails 𝐸)𝑃 ↔ ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
2419, 21, 233imtr4d 282 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → (𝐹(𝑉 Walks 𝐸)𝑃𝐹(𝑉 Trails 𝐸)𝑃))
25 simpr 476 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → Fun 𝑃)
2624, 25jctird 565 . . . . . 6 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → (𝐹(𝑉 Walks 𝐸)𝑃 → (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun 𝑃)))
27 isspth 26099 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 SPaths 𝐸)𝑃 ↔ (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun 𝑃)))
2827bicomd 212 . . . . . . 7 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun 𝑃) ↔ 𝐹(𝑉 SPaths 𝐸)𝑃))
2928adantr 480 . . . . . 6 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → ((𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun 𝑃) ↔ 𝐹(𝑉 SPaths 𝐸)𝑃))
3026, 29sylibd 228 . . . . 5 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ Fun 𝑃) → (𝐹(𝑉 Walks 𝐸)𝑃𝐹(𝑉 SPaths 𝐸)𝑃))
3130ex 449 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (Fun 𝑃 → (𝐹(𝑉 Walks 𝐸)𝑃𝐹(𝑉 SPaths 𝐸)𝑃)))
3231com23 84 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Walks 𝐸)𝑃 → (Fun 𝑃𝐹(𝑉 SPaths 𝐸)𝑃)))
332, 32mpcom 37 . 2 (𝐹(𝑉 Walks 𝐸)𝑃 → (Fun 𝑃𝐹(𝑉 SPaths 𝐸)𝑃))
3433imp 444 1 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ Fun 𝑃) → 𝐹(𝑉 SPaths 𝐸)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {cpr 4127   class class class wbr 4583  ccnv 5037  dom cdm 5038  Fun wfun 5798  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   Walks cwalk 26026   Trails ctrail 26027   SPaths cspath 26029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-trail 26037  df-spth 26039
This theorem is referenced by:  usg2wotspth  26411
  Copyright terms: Public domain W3C validator