Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimss | Structured version Visualization version GIF version |
Description: The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.) |
Ref | Expression |
---|---|
wlimss | ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlim 31002 | . 2 ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | |
2 | ssrab2 3650 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3598 | 1 ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1475 ≠ wne 2780 {crab 2900 ⊆ wss 3540 Predcpred 5596 supcsup 8229 infcinf 8230 WLimcwlim 30998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-in 3547 df-ss 3554 df-wlim 31002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |