Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom3 | Structured version Visualization version GIF version |
Description: Substituting 𝑦 for
𝑥
and then 𝑧 for 𝑦 is equivalent to
substituting 𝑧 for both 𝑥 and 𝑦. Copy
of ~? sbcom3OLD with
a shortened proof.
Keep this theorem for a while here because an external reference to it exists. (Contributed by Giovanni Mascellani, 8-Apr-2018.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wl-sbcom3 | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2015 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 𝑦 = 𝑧 | |
2 | sbequ 2364 | . . . . 5 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
3 | 2 | sps 2043 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
4 | 1, 3 | sbbid 2391 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)) |
5 | 2 | pm5.74i 259 | . . . . . 6 ⊢ ((𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
6 | 5 | albii 1737 | . . . . 5 ⊢ (∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
7 | 6 | a1i 11 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))) |
8 | sb4b 2346 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑))) | |
9 | sb4b 2346 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))) | |
10 | 7, 8, 9 | 3bitr4d 299 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)) |
11 | 4, 10 | pm2.61i 175 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
12 | sbcom 2406 | . 2 ⊢ ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑) | |
13 | 11, 12 | bitri 263 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∀wal 1473 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |