Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nannot | Structured version Visualization version GIF version |
Description: Show equivalence between negation and the Nicod version. To derive nic-dfneg 1586, apply nanbi 1446. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.) |
Ref | Expression |
---|---|
wl-nannot | ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-dfnan2 32475 | . 2 ⊢ ((𝜑 ⊼ 𝜑) ↔ (𝜑 → ¬ 𝜑)) | |
2 | pm4.8 379 | . 2 ⊢ ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑) | |
3 | 1, 2 | bitr2i 264 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ⊼ wnan 1439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-nan 1440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |