Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nannot Structured version   Visualization version   GIF version

Theorem wl-nannot 32478
Description: Show equivalence between negation and the Nicod version. To derive nic-dfneg 1586, apply nanbi 1446. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.)
Assertion
Ref Expression
wl-nannot 𝜑 ↔ (𝜑𝜑))

Proof of Theorem wl-nannot
StepHypRef Expression
1 wl-dfnan2 32475 . 2 ((𝜑𝜑) ↔ (𝜑 → ¬ 𝜑))
2 pm4.8 379 . 2 ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑)
31, 2bitr2i 264 1 𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wnan 1439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-nan 1440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator