 Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-lem-exsb Structured version   Visualization version   GIF version

Theorem wl-lem-exsb 32527
 Description: This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.)
Assertion
Ref Expression
wl-lem-exsb (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-lem-exsb
StepHypRef Expression
1 ax12v2 2036 . 2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 sp 2041 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
32com12 32 . 2 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
41, 3impbid 201 1 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator