Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsal1i | Structured version Visualization version GIF version |
Description: The antecedent 𝑥 = 𝑦 is irrelevant, if one or both setvar variables are not free in 𝜑. (Contributed by Wolf Lammen, 1-Sep-2018.) |
Ref | Expression |
---|---|
wl-equsal1i.1 | ⊢ (Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑) |
wl-equsal1i.2 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
wl-equsal1i | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-equsal1i.1 | . 2 ⊢ (Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑) | |
2 | wl-equsal1i.2 | . . 3 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 2 | gen2 1714 | . 2 ⊢ ∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) |
4 | sp 2041 | . . . . 5 ⊢ (∀𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
5 | 4 | alcoms 2022 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
6 | wl-equsal1t 32506 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | |
7 | 5, 6 | syl5ib 233 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
8 | wl-equsalcom 32507 | . . . . 5 ⊢ (∀𝑦(𝑦 = 𝑥 → 𝜑) ↔ ∀𝑦(𝑥 = 𝑦 → 𝜑)) | |
9 | wl-equsal1t 32506 | . . . . . 6 ⊢ (Ⅎ𝑦𝜑 → (∀𝑦(𝑦 = 𝑥 → 𝜑) ↔ 𝜑)) | |
10 | 9 | biimpd 218 | . . . . 5 ⊢ (Ⅎ𝑦𝜑 → (∀𝑦(𝑦 = 𝑥 → 𝜑) → 𝜑)) |
11 | 8, 10 | syl5bir 232 | . . . 4 ⊢ (Ⅎ𝑦𝜑 → (∀𝑦(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
12 | 11 | spsd 2045 | . . 3 ⊢ (Ⅎ𝑦𝜑 → (∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
13 | 7, 12 | jaoi 393 | . 2 ⊢ ((Ⅎ𝑥𝜑 ∨ Ⅎ𝑦𝜑) → (∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
14 | 1, 3, 13 | mp2 9 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∀wal 1473 Ⅎwnf 1699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |