 Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dveeq12 Structured version   Visualization version   GIF version

Theorem wl-dveeq12 32490
 Description: The current form of ax-13 2234 has a particular disadvantage: The condition ¬ 𝑥 = 𝑦 is less versatile than the general form ¬ ∀𝑥𝑥 = 𝑦. You need ax-10 2006 to arrive at the more general form presented here. You need 19.8a 2039 (or ax-12 2034) to restore 𝑦 = 𝑧 from ∃𝑥𝑦 = 𝑧 again. (Contributed by Wolf Lammen, 9-Jun-2021.)
Assertion
Ref Expression
wl-dveeq12 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem wl-dveeq12
StepHypRef Expression
1 exnal 1744 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2 hbe1 2008 . . 3 (∃𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
3 ax13lem2 2284 . . . . . . 7 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦𝑧 = 𝑦))
4 ax13lem1 2236 . . . . . . 7 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
53, 4syld 46 . . . . . 6 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
65com12 32 . . . . 5 (∃𝑥 𝑧 = 𝑦 → (¬ 𝑥 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
76aleximi 1749 . . . 4 (∀𝑥𝑥 𝑧 = 𝑦 → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥𝑥 𝑧 = 𝑦))
87com12 32 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 → (∀𝑥𝑥 𝑧 = 𝑦 → ∃𝑥𝑥 𝑧 = 𝑦))
9 hbe1a 2009 . . 3 (∃𝑥𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)
102, 8, 9syl56 35 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
111, 10sylbir 224 1 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator