Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem9 | Structured version Visualization version GIF version |
Description: The easy part when 𝑥 coincides with 𝑦. (Contributed by Wolf Lammen, 30-Jun-2019.) |
Ref | Expression |
---|---|
wl-ax11-lem9 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 251 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
2 | 1 | dral1 2313 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜑)) |
3 | 2 | aecoms 2300 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 ↔ ∀𝑦𝜑)) |
4 | 3 | dral1 2313 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
5 | 4 | aecoms 2300 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |