Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem8 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem8 32548
 Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem8 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝑥𝜑))
Distinct variable group:   𝑥,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢)

Proof of Theorem wl-ax11-lem8
StepHypRef Expression
1 axc11n 2295 . . 3 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
21con3i 149 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
3 wl-ax11-lem1 32541 . . . . . . 7 (∀𝑢 𝑢 = 𝑦 → (∀𝑢 𝑢 = 𝑥 ↔ ∀𝑦 𝑦 = 𝑥))
43notbid 307 . . . . . 6 (∀𝑢 𝑢 = 𝑦 → (¬ ∀𝑢 𝑢 = 𝑥 ↔ ¬ ∀𝑦 𝑦 = 𝑥))
54anbi1d 737 . . . . 5 (∀𝑢 𝑢 = 𝑦 → ((¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑢𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑢𝑥[𝑢 / 𝑦]𝜑)))
64anbi1d 737 . . . . . . . 8 (∀𝑢 𝑢 = 𝑦 → ((¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑥[𝑢 / 𝑦]𝜑)))
7 axc11n 2295 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
87con3i 149 . . . . . . . . . 10 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑦)
9 wl-ax11-lem4 32544 . . . . . . . . . . . 12 𝑥(∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
10 sbequ12 2097 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (𝜑 ↔ [𝑢 / 𝑦]𝜑))
1110equcoms 1934 . . . . . . . . . . . . . 14 (𝑢 = 𝑦 → (𝜑 ↔ [𝑢 / 𝑦]𝜑))
1211sps 2043 . . . . . . . . . . . . 13 (∀𝑢 𝑢 = 𝑦 → (𝜑 ↔ [𝑢 / 𝑦]𝜑))
1312adantr 480 . . . . . . . . . . . 12 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝜑 ↔ [𝑢 / 𝑦]𝜑))
149, 13albid 2077 . . . . . . . . . . 11 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑥𝜑 ↔ ∀𝑥[𝑢 / 𝑦]𝜑))
1514ex 449 . . . . . . . . . 10 (∀𝑢 𝑢 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥[𝑢 / 𝑦]𝜑)))
168, 15syl5 33 . . . . . . . . 9 (∀𝑢 𝑢 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 ↔ ∀𝑥[𝑢 / 𝑦]𝜑)))
1716pm5.32d 669 . . . . . . . 8 (∀𝑢 𝑢 = 𝑦 → ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑥𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑥[𝑢 / 𝑦]𝜑)))
186, 17bitr4d 270 . . . . . . 7 (∀𝑢 𝑢 = 𝑦 → ((¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑥𝜑)))
1918dral1 2313 . . . . . 6 (∀𝑢 𝑢 = 𝑦 → (∀𝑢(¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑥[𝑢 / 𝑦]𝜑) ↔ ∀𝑦(¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑥𝜑)))
20 wl-ax11-lem7 32547 . . . . . 6 (∀𝑢(¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑢𝑥[𝑢 / 𝑦]𝜑))
21 wl-ax11-lem7 32547 . . . . . 6 (∀𝑦(¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑥𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑦𝑥𝜑))
2219, 20, 213bitr3g 301 . . . . 5 (∀𝑢 𝑢 = 𝑦 → ((¬ ∀𝑢 𝑢 = 𝑥 ∧ ∀𝑢𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑦𝑥𝜑)))
235, 22bitr3d 269 . . . 4 (∀𝑢 𝑢 = 𝑦 → ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑢𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑦𝑥𝜑)))
24 pm5.32 666 . . . 4 ((¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝑥𝜑)) ↔ ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑢𝑥[𝑢 / 𝑦]𝜑) ↔ (¬ ∀𝑦 𝑦 = 𝑥 ∧ ∀𝑦𝑥𝜑)))
2523, 24sylibr 223 . . 3 (∀𝑢 𝑢 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝑥𝜑)))
2625imp 444 . 2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝑥𝜑))
272, 26sylan2 490 1 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234  ax-wl-11v 32540 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by:  wl-ax11-lem10  32550
 Copyright terms: Public domain W3C validator