MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem10 Structured version   Visualization version   GIF version

Theorem wfrlem10 7311
Description: Lemma for well-founded recursion. When 𝑧 is an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), then its predecessor class is equal to dom 𝐹. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem10.1 𝑅 We 𝐴
wfrlem10.2 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem10 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Distinct variable group:   𝑧,𝐴
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem10
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wfrlem10.2 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrlem8 7309 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
32biimpi 205 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
4 predss 5604 . . . 4 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
54a1i 11 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹)
6 simpr 476 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ dom 𝐹)
7 eldifn 3695 . . . . . . . . . 10 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
8 eleq1 2676 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 ∈ dom 𝐹𝑧 ∈ dom 𝐹))
98notbid 307 . . . . . . . . . 10 (𝑤 = 𝑧 → (¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹))
107, 9syl5ibrcom 236 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹))
1110con2d 128 . . . . . . . 8 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧))
1211imp 444 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑤 = 𝑧)
131wfrdmcl 7310 . . . . . . . . . 10 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
1413adantl 481 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
15 ssel 3562 . . . . . . . . . . . 12 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑧 ∈ dom 𝐹))
1615con3d 147 . . . . . . . . . . 11 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
177, 16syl5com 31 . . . . . . . . . 10 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
1817adantr 480 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
1914, 18mpd 15 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))
20 eldifi 3694 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
21 elpredg 5611 . . . . . . . . . 10 ((𝑤 ∈ dom 𝐹𝑧𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2221ancoms 468 . . . . . . . . 9 ((𝑧𝐴𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2320, 22sylan 487 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2419, 23mtbid 313 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧𝑅𝑤)
251wfrdmss 7308 . . . . . . . . 9 dom 𝐹𝐴
2625sseli 3564 . . . . . . . 8 (𝑤 ∈ dom 𝐹𝑤𝐴)
27 wfrlem10.1 . . . . . . . . . 10 𝑅 We 𝐴
28 weso 5029 . . . . . . . . . 10 (𝑅 We 𝐴𝑅 Or 𝐴)
2927, 28ax-mp 5 . . . . . . . . 9 𝑅 Or 𝐴
30 solin 4982 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑧𝐴)) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3129, 30mpan 702 . . . . . . . 8 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3226, 20, 31syl2anr 494 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3312, 24, 32ecase23d 1428 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤𝑅𝑧)
34 vex 3176 . . . . . . 7 𝑧 ∈ V
35 vex 3176 . . . . . . . 8 𝑤 ∈ V
3635elpred 5610 . . . . . . 7 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧)))
3734, 36ax-mp 5 . . . . . 6 (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧))
386, 33, 37sylanbrc 695 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧))
3938ex 449 . . . 4 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧)))
4039ssrdv 3574 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → dom 𝐹 ⊆ Pred(𝑅, dom 𝐹, 𝑧))
415, 40eqssd 3585 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) = dom 𝐹)
423, 41sylan9eqr 2666 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  c0 3874   class class class wbr 4583   Or wor 4958   We wwe 4996  dom cdm 5038  Predcpred 5596  wrecscwrecs 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-so 4960  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-wrecs 7294
This theorem is referenced by:  wfrlem15  7316
  Copyright terms: Public domain W3C validator