Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2g Structured version   Visualization version   GIF version

Theorem wfis2g 5636
 Description: Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.)
Hypotheses
Ref Expression
wfis2g.1 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2g.2 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2g ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)

Proof of Theorem wfis2g
StepHypRef Expression
1 nfv 1830 . 2 𝑦𝜓
2 wfis2g.1 . 2 (𝑦 = 𝑧 → (𝜑𝜓))
3 wfis2g.2 . 2 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
41, 2, 3wfis2fg 5634 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∀wral 2896   Se wse 4995   We wwe 4996  Predcpred 5596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597 This theorem is referenced by:  wfis2  5637  wfr3g  7300
 Copyright terms: Public domain W3C validator