MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemappo Structured version   Visualization version   GIF version

Theorem wemappo 8337
Description: Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values.

Without totality on the values or least differing indexes, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemappo ((𝐴𝑉𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemappo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝑉𝐴 ∈ V)
2 simpll3 1095 . . . . . . 7 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → 𝑆 Po 𝐵)
3 elmapi 7765 . . . . . . . . 9 (𝑎 ∈ (𝐵𝑚 𝐴) → 𝑎:𝐴𝐵)
43adantl 481 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) → 𝑎:𝐴𝐵)
54ffvelrnda 6267 . . . . . . 7 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → (𝑎𝑏) ∈ 𝐵)
6 poirr 4970 . . . . . . 7 ((𝑆 Po 𝐵 ∧ (𝑎𝑏) ∈ 𝐵) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
72, 5, 6syl2anc 691 . . . . . 6 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
87intnanrd 954 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → ¬ ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
98nrexdv 2984 . . . 4 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) → ¬ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
10 vex 3176 . . . . 5 𝑎 ∈ V
11 wemapso.t . . . . . 6 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
1211wemaplem1 8334 . . . . 5 ((𝑎 ∈ V ∧ 𝑎 ∈ V) → (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐)))))
1310, 10, 12mp2an 704 . . . 4 (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
149, 13sylnibr 318 . . 3 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) → ¬ 𝑎𝑇𝑎)
15 simpll1 1093 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝐴 ∈ V)
16 simplr1 1096 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎 ∈ (𝐵𝑚 𝐴))
17 simplr2 1097 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏 ∈ (𝐵𝑚 𝐴))
18 simplr3 1098 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑐 ∈ (𝐵𝑚 𝐴))
19 simpll2 1094 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑅 Or 𝐴)
20 simpll3 1095 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑆 Po 𝐵)
21 simprl 790 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑏)
22 simprr 792 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏𝑇𝑐)
2311, 15, 16, 17, 18, 19, 20, 21, 22wemaplem3 8336 . . . 4 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑐)
2423ex 449 . . 3 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐))
2514, 24ispod 4967 . 2 ((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
261, 25syl3an1 1351 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  {copab 4642   Po wpo 4957   Or wor 4958  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  wemapsolem  8338
  Copyright terms: Public domain W3C validator