Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Visualization version   GIF version

Theorem wallispilem5 38962
Description: The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem5.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem5.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem5.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
wallispilem5.5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
Assertion
Ref Expression
wallispilem5 𝐻 ⇝ 1
Distinct variable groups:   𝑘,𝑛,𝑥   𝑥,𝐹   𝑘,𝐺   𝑘,𝐿
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑘,𝑛)   𝐼(𝑥,𝑘,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 wallispilem5.2 . . 3 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3 wallispilem5.3 . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
4 wallispilem5.4 . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
51, 2, 3, 4wallispilem4 38961 . 2 𝐺 = 𝐻
6 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
7 1zzd 11285 . . . 4 (⊤ → 1 ∈ ℤ)
8 wallispilem5.5 . . . . 5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
9 2cnd 10970 . . . . 5 (⊤ → 2 ∈ ℂ)
10 2ne0 10990 . . . . . 6 2 ≠ 0
1110a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
12 1cnd 9935 . . . . 5 (⊤ → 1 ∈ ℂ)
138, 9, 11, 12clim1fr1 38668 . . . 4 (⊤ → 𝐿 ⇝ 1)
14 nnex 10903 . . . . . . 7 ℕ ∈ V
1514mptex 6390 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) ∈ V
163, 15eqeltri 2684 . . . . 5 𝐺 ∈ V
1716a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
18 2nn0 11186 . . . . . . . . . . . 12 2 ∈ ℕ0
1918a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℕ0)
20 nnnn0 11176 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2119, 20nn0mulcld 11233 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ0)
22 1nn0 11185 . . . . . . . . . . 11 1 ∈ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℕ0)
2421, 23nn0addcld 11232 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ0)
2524nn0red 11229 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
2621nn0red 11229 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
27 2cnd 10970 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℂ)
28 nncn 10905 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2910a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ≠ 0)
30 nnne0 10930 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3127, 28, 29, 30mulne0d 10558 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 0)
3225, 26, 31redivcld 10732 . . . . . . 7 (𝑛 ∈ ℕ → (((2 · 𝑛) + 1) / (2 · 𝑛)) ∈ ℝ)
338, 32fmpti 6291 . . . . . 6 𝐿:ℕ⟶ℝ
3433a1i 11 . . . . 5 (⊤ → 𝐿:ℕ⟶ℝ)
3534ffvelrnda 6267 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
362wallispilem3 38960 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3721, 36syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3837rpred 11748 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ)
392wallispilem3 38960 . . . . . . . . 9 (((2 · 𝑛) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4024, 39syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4138, 40rerpdivcld 11779 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) ∈ ℝ)
423, 41fmpti 6291 . . . . . 6 𝐺:ℕ⟶ℝ
4342a1i 11 . . . . 5 (⊤ → 𝐺:ℕ⟶ℝ)
4443ffvelrnda 6267 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
4518a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
46 nnnn0 11176 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4745, 46nn0mulcld 11233 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
482wallispilem3 38960 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ0 → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
4947, 48syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
5049rpred 11748 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ)
51 2nn 11062 . . . . . . . . . . . . 13 2 ∈ ℕ
5251a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℕ)
53 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
5452, 53nnmulcld 10945 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ)
55 nnm1nn0 11211 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
572wallispilem3 38960 . . . . . . . . . 10 (((2 · 𝑘) − 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5856, 57syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5958rpred 11748 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ)
6022a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℕ0)
6147, 60nn0addcld 11232 . . . . . . . . 9 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ0)
622wallispilem3 38960 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
6361, 62syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
64 2cnd 10970 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
65 nncn 10905 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6664, 65mulcld 9939 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
67 1cnd 9935 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 1 ∈ ℂ)
6866, 67npcand 10275 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) + 1) = (2 · 𝑘))
6968fveq2d 6107 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) = (𝐼‘(2 · 𝑘)))
702, 56wallispilem1 38958 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7169, 70eqbrtrrd 4607 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7250, 59, 63, 71lediv1dd 11806 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
7366, 67addcld 9938 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7410a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ≠ 0)
75 nnne0 10930 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
7664, 65, 74, 75mulne0d 10558 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ≠ 0)
7773, 66, 76divcld 10680 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) ∈ ℂ)
7863rpcnd 11750 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℂ)
7963rpne0d 11753 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≠ 0)
8077, 78, 79divcan4d 10686 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
81 2re 10967 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℝ)
83 nnre 10904 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
8482, 83remulcld 9949 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
85 1red 9934 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 ∈ ℝ)
8684, 85readdcld 9948 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
8745nn0ge0d 11231 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 ≤ 2)
88 nnge1 10923 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
8982, 83, 87, 88lemulge11d 10840 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ≤ (2 · 𝑘))
9084ltp1d 10833 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
9182, 84, 86, 89, 90lelttrd 10074 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 < ((2 · 𝑘) + 1))
9282, 86, 91ltled 10064 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 2 ≤ ((2 · 𝑘) + 1))
9345nn0zd 11356 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℤ)
9461nn0zd 11356 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℤ)
95 eluz 11577 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑘) + 1) ∈ ℤ) → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9693, 94, 95syl2anc 691 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9792, 96mpbird 246 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ (ℤ‘2))
982, 97itgsinexp 38846 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))))
9966, 67pncand 10272 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
10099oveq1d 6564 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) = ((2 · 𝑘) / ((2 · 𝑘) + 1)))
101 1e2m1 11013 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
102101a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 = (2 − 1))
103102oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) = ((2 · 𝑘) − (2 − 1)))
10466, 64, 67subsub3d 10301 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − (2 − 1)) = (((2 · 𝑘) + 1) − 2))
105103, 104eqtr2d 2645 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 2) = ((2 · 𝑘) − 1))
106105fveq2d 6107 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) + 1) − 2)) = (𝐼‘((2 · 𝑘) − 1)))
107100, 106oveq12d 6567 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
10898, 107eqtrd 2644 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
109108oveq2d 6565 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11054peano2nnd 10914 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ)
111110nnne0d 10942 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
11266, 73, 111divcld 10680 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) / ((2 · 𝑘) + 1)) ∈ ℂ)
11358rpcnd 11750 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℂ)
11477, 112, 113mulassd 9942 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11573, 66, 111, 76divcan6d 10699 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = 1)
116115oveq1d 6564 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (1 · (𝐼‘((2 · 𝑘) − 1))))
117113mulid2d 9937 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
118116, 117eqtrd 2644 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
119109, 114, 1183eqtr2d 2650 . . . . . . . . 9 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = (𝐼‘((2 · 𝑘) − 1)))
120119oveq1d 6564 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12180, 120eqtr3d 2646 . . . . . . 7 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12272, 121breqtrrd 4611 . . . . . 6 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ (((2 · 𝑘) + 1) / (2 · 𝑘)))
12349, 63rpdivcld 11765 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+)
124 nfcv 2751 . . . . . . . 8 𝑛𝑘
125 nfmpt1 4675 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1262, 125nfcxfr 2749 . . . . . . . . . 10 𝑛𝐼
127 nfcv 2751 . . . . . . . . . 10 𝑛(2 · 𝑘)
128126, 127nffv 6110 . . . . . . . . 9 𝑛(𝐼‘(2 · 𝑘))
129 nfcv 2751 . . . . . . . . 9 𝑛 /
130 nfcv 2751 . . . . . . . . . 10 𝑛((2 · 𝑘) + 1)
131126, 130nffv 6110 . . . . . . . . 9 𝑛(𝐼‘((2 · 𝑘) + 1))
132128, 129, 131nfov 6575 . . . . . . . 8 𝑛((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1)))
133 oveq2 6557 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
134133fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘(2 · 𝑛)) = (𝐼‘(2 · 𝑘)))
135133oveq1d 6564 . . . . . . . . . 10 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
136135fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘((2 · 𝑛) + 1)) = (𝐼‘((2 · 𝑘) + 1)))
137134, 136oveq12d 6567 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
138124, 132, 137, 3fvmptf 6209 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+) → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
139123, 138mpdan 699 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
1408a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))))
141 simpr 476 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
142141oveq2d 6565 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
143142oveq1d 6564 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
144143, 142oveq12d 6567 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (((2 · 𝑛) + 1) / (2 · 𝑛)) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
145140, 144, 53, 77fvmptd 6197 . . . . . 6 (𝑘 ∈ ℕ → (𝐿𝑘) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
146122, 139, 1453brtr4d 4615 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
147146adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
14878, 79dividd 10678 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) = 1)
14963rpred 11748 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ)
1502, 47wallispilem1 38958 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≤ (𝐼‘(2 · 𝑘)))
151149, 50, 63, 150lediv1dd 11806 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
152148, 151eqbrtrrd 4607 . . . . . 6 (𝑘 ∈ ℕ → 1 ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
153152, 139breqtrrd 4611 . . . . 5 (𝑘 ∈ ℕ → 1 ≤ (𝐺𝑘))
154153adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ≤ (𝐺𝑘))
1556, 7, 13, 17, 35, 44, 147, 154climsqz2 14220 . . 3 (⊤ → 𝐺 ⇝ 1)
156155trud 1484 . 2 𝐺 ⇝ 1
1575, 156eqbrtrri 4606 1 𝐻 ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  wne 2780  Vcvv 3173   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  (,)cioo 12046  seqcseq 12663  cexp 12722  cli 14063  sincsin 14633  πcpi 14636  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437
This theorem is referenced by:  wallispi  38963
  Copyright terms: Public domain W3C validator